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Abstract 

The accurate assessment of coronavirus disease 2019 (COVID-19) severity remains a cornerstone for optimized resource 

allocation and clinical treatment planning. This systematic review and meta-analysis aimed to evaluate and compare the 

diagnostic performance of artificial intelligence (AI) models utilizing chest X-ray (CXR) versus lung ultrasound (LUS) 

modalities for COVID-19 severity stratification. Following the PRISMA 2020 guidelines, we conducted a comprehensive 

literature search across PubMed, Scopus, Web of Science, and Google Scholar from 2020 through April 2025. Inclusion 

criteria specifically targeted studies employing AI for severity assessment, while excluding secondary research, case reports, 

and non-English publications. Our analysis of ten selected studies revealed a progressive evolution in model performance 

for both binary and multi-class classification tasks. Detailed meta-regression indicated that transformer-based architectures 

and domain-specific pre-training contributed to higher sensitivity levels, particularly in early-stage stratification. Although 

CXR was the more prevalent modality in the literature, LUS-based AI models exhibited comparable diagnostic efficacy, 

offering a portable and radiation-free alternative that enhances clinical workflows in resource-constrained environments and 

point-of-care settings. Furthermore, the results indicate that the integration of domain knowledge and the application of 

rigorous external validation significantly enhance model generalizability. The analysis underscores a persistent performance 

gap in cross-institutional validation, suggesting a need for more diverse training cohorts. We conclude that while AI-driven 

CXR and LUS tools show high potential for severity assessment, the path to clinical deployment necessitates standardized 

external validation and the fusion of multi-modal clinical data to ensure robust predictive accuracy in diverse healthcare 

settings. 
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Introduction 

The COVID-19 pandemic presented significant 

challenges to healthcare systems all over the world, 

necessitating the rapid development of tools for 

disease severity assessment and prognosis (1). 

Artificial Intelligence (AI) appeared as a promising 

strategic technology to augment clinical decision-

making by analyzing medical imaging data, 

particularly chest X-ray (CXR) and lung ultrasound 

(LUS), in addition to other indications and uses in 

medical and healthcare settings (2). Despite 

dedicated research activity and multiple studies 

published about COVID-19 since 2020 to date, 

significant heterogeneity exists in the studies' 

methodologies, with varying claims regarding 

performance and utility across different imaging 

modalities. 

Accurate assessment of COVID-19 severity is 

important for appropriate resource allocation, 

treatment planning, and prognostication. While the 

scoring systems, such as the Sequential Organ 

Failure Assessment (SOFA) score and laboratory 

markers like D-dimer levels, provide valuable 

information, they often require serial measurements 

and may lag behind radiographic changes (3-4) 

Medical imaging offers supplementary information 

about lung involvement that may precede further 

deterioration, making it highly valuable for early 

intervention. However, interpretation of imaging 

findings in certain cases may necessitate specialized 

expertise, creating bottlenecks in high-volume 

settings, resource-limited environments, and loaded 

settings (5). 

AI-based approaches have been developed to help 

in addressing these challenges by automating the 

analysis of CXR and LUS images whenever 

feasible. CXR represents the most widely available 

imaging modality, which offers full visualization of 

lung fields but limited sensitivity for early or minute 

changes in the early stages of some cases (6). 

Controversially, LUS provides better 

characterization of pleural and subpleural 

abnormalities, with the advantages of portability, 

lack of radiation, and suitability for serial 

monitoring; however, it has a more limited field of 

view. The relative performance of AI models across 

these modalities remains incompletely understood, 

as does the impact of methodological factors such as 

architecture selection, dataset characteristics, and 

domain knowledge integration (7). 

Previous studies have investigated multiple aspects 

of AI for COVID-19 diagnosis or classification, but 

none have precisely focused on analyzing the 

severity assessment specifically, compared 

performance across imaging modalities, or 

evaluated the advancements of technologies and 

strategies over time. In addition to that, the impact 

of domain knowledge integration on model 

performance and the reliability of external 

validation has not been sufficiently addressed yet 

(8-13). These gaps limit our understanding of the 

most effective options and hinder clinical 

translation of these promising technologies. 

In this study, we aim to conduct a systematic review 

and meta-analysis to include studies that have 

evaluated AI-based approaches for COVID-19 

severity assessment since the emergence of the 

COVID-19 pandemic in 2020. We look forward to 

and aspire to provide a detailed synthesis of the 

current evidence regarding AI-based severity 

assessment in COVID-19, identifying the most 

effective approaches, quantifying the factors 

associated with improved performance, and 

highlighting the important areas for further 

consideration. These insights can guide both 

technical development and clinical applications of 

AI tools for respiratory infection management that 

can also be useful even when extending beyond 

COVID-19 to other respiratory conditions. 

Methods 

Search Strategy 

We performed a search of the literature published 

from the emergence of the COVID-19 pandemic in 

2020 to April 30, 2025, following the Preferred 

Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) 2020 guidelines (14). The 

search was performed across multiple electronic 

databases, including PubMed/MEDLINE, Scopus, 

Web of Science, and Google Scholar. We developed 
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a keyword-based search strategy using a 

combination of Medical Subject Headings (MeSH) 

terms and free-text keywords related to three main 

concepts: COVID-19, artificial intelligence, and 

severity assessment. For COVID-19, we used terms 

such as "COVID-19," "SARS-CoV-2," "novel 

coronavirus," "2019-nCoV," and "coronavirus 

disease 2019." For artificial intelligence, we 

included "artificial intelligence," "machine 

learning," "deep learning," "neural network," 

"convolutional neural network," "support vector 

machine," "random forest," "transformer," and 

"computer-aided." For severity assessment, we used 

terms such as "severity," "prognosis," "prediction," 

"classification," "stratification," "critical," 

"moderate," "mild," "scoring," and "grading." 

Additionally, we included imaging-specific terms 

such as "chest X-ray," "CXR," "radiograph," "lung 

ultrasound," "LUS," and "point-of-care ultrasound." 

These search terms were combined using Boolean 

operators "AND" and "OR" as appropriate. 

Eligibility Criteria 

Studies were eligible for inclusion if they met the 

following criteria: (1) focused on COVID-19 

patients with confirmed diagnosis; (2) developed or 

validated AI-based models for assessing COVID-19 

severity using CXR, LUS, or both; (3) provided 

quantitative performance metrics for severity 

assessment; (4) were original research articles 

published in peer-reviewed journals or high-quality 

preprints; and (5) were published in English. We 

excluded studies that: (1) focused solely on COVID-

19 diagnosis without severity assessment; (2) used 

CT imaging only; (3) review articles, editorials, or 

conference abstracts; (4) provided insufficient 

methodological details; (5) had duplicate cohorts 

reported in other included studies; or (6) lacked 

performance metrics. Studies utilizing any type of 

AI approach (e.g., deep learning, traditional 

machine learning, hybrid methods) were considered 

eligible. 

Study Selection 

The study selection process was conducted in two 

phases. In the first phase, two reviewers 

independently screened titles and abstracts to 

identify preliminary eligible studies. In the second 

phase, the same reviewers independently assessed 

the full texts of possibly eligible studies against the 

inclusion and exclusion criteria. Any disagreements 

were resolved through discussion with a third 

reviewer. The inter-rater reliability was assessed 

using Cohen's kappa coefficient. The selection 

process adhered to the PRISMA 2020 flowchart 

guidelines, documenting the number of studies 

identified, screened, assessed for eligibility, and 

included in the final analysis, along with reasons for 

exclusions. 

 Data Extraction and Coding 

For each included study, we extracted: (1) study 

characteristics (author, year, geographical location, 

study design); (2) population characteristics (sample 

size, demographics, severity distribution); (3) 

imaging modality (CXR, LUS, or multimodal); (4) 

dataset characteristics (size, class distribution, 

diversity aspects); (5) AI model characteristics 

(architecture type, key features, parameter count); 

(6) domain knowledge integration methods (if any); 

(7) performance metrics (accuracy, 

sensitivity/specificity, Area Under the Receiver 

Operating Characteristic (AUC-ROC) curve, error 

metrics, correlation coefficients); (8) validation 

methodology (cross-validation, external validation); 

and (9) key findings. For studies reporting multiple 

models or outcomes, we extracted data for the 

primary or best-performing model as specified by 

the authors.  

Outcomes 

The primary outcomes of interest in this systematic 

review were the statistical performance metrics of 

the AI models, including the area under the curve 

(AUC), accuracy, sensitivity, and specificity, used 

for classifying COVID-19 severity. 

Quality Assessment and Risk of Bias 

The methodological quality and risk of bias of 

included studies were assessed using a modified 

version of the Quality Assessment of Diagnostic 

Accuracy Studies-2 (QUADAS-2) tool, adapted for 

AI-based diagnostic studies (15-17). This 

evaluation covered four domains: patient selection, 
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index test (AI model), reference standard, and 

validation methodology. Each domain was assessed 

for risk of bias (low, moderate, or high) and 

applicability concerns. Two reviewers 

independently performed the quality assessment, 

with disagreements resolved through discussion 

with a third reviewer. Studies were not excluded 

based on quality assessment, but sensitivity analyses 

were conducted to evaluate the impact of study 

quality on meta-analysis results. 

Statistical Analysis 

For each included study, we calculated standardized 

effect sizes based on reported performance metrics. 

For binary classification models, we used accuracy, 

sensitivity, specificity, and AUC values. For multi-

class classification or regression models, we used 

appropriate metrics such as multi-class accuracy, F1 

scores, mean absolute error (MAE), or correlation 

coefficients. To allow for comparison across 

different metric types, we converted all metrics to a 

standardized percentage improvement relative to 

baseline performance or to the performance of 

models without domain knowledge integration (as 

appropriate for each analysis). For error metrics 

(e.g., MAE, RMSE), we converted improvements to 

percentages by dividing the error reduction by the 

baseline error. 

We conducted a random-effects meta-analysis using 

the restricted maximum likelihood (REML) method 

to estimate pooled effect sizes and their 95% 

confidence intervals (CIs). Heterogeneity was 

assessed using the I² statistic, with values <25% 

considered low, 25-50% moderate, and >50% 

significant heterogeneity. Publication bias was 

evaluated using contour-enhanced funnel plots, 

Egger's regression test, Begg's rank correlation test, 

and the trim-and-fill method. A p-curve analysis 

was performed to assess the evidential value of the 

included studies and detect p-hacking. 

Subgroup and Meta-Regression 

Subgroup analyses were conducted to explore the 

contributing sources of heterogeneity based on: (1) 

imaging modality (LUS only, CXR only, 

multimodal); (2) AI architecture (CNN-based, 

transformer/attention-based, segmentation-focused, 

unsupervised/other); (3) domain knowledge 

integration (explicit integration vs. no explicit 

integration); (4) external validation (present vs. 

absent); (5) publication period (2020-2021, 2022-

2023, 2024); (6) follow-up assessment (longitudinal 

vs. cross-sectional only); (7) dataset size (small, 

medium, large); and (8) performance metric type. 

Between-group differences were tested using the Q-

test, with a P-value less than 0.05 considered 

statistically significant. 

We performed univariate and multivariate meta-

regression to quantify the impact of certain 

moderators on AI performance. Key predictors 

included domain knowledge integration rate 

(percentage), publication year, sample size (log-

transformed), dataset diversity (number of sources), 

and external validation performance gap 

(percentage points). Variable importance was 

calculated based on standardized regression 

coefficients and partial R² values. Multicollinearity 

was assessed using variance inflation factors (VIF), 

with values over five considered problematic. All 

statistical analyses were performed using R version 

4.4.2. (R Foundation for Statistical Computing) with 

the 'metafor', 'meta', and 'dmetar' packages. 

Statistical significance was set at a P-value less than 

0.05 for all analyses. 

Results 

Quality Assessment Results 

The methodological quality of the ten included 

studies was assessed to ensure the reliability of the 

findings. Most studies demonstrated a high level of 

technical robustness, particularly in data labeling 

and the implementation of validation sets. While 

some studies lacked extensive external validation, 

the overall risk of bias was categorized as low to 

moderate, providing a credible foundation for this 

meta-analysis. 

Study Selection and Characteristics 

The literature search identified 877 records (835 

from database searches and 42 from other sources). 

After removing 154 duplicates, 723 records were 

screened by title and abstract, yielding 77 full-text 

articles for eligibility assessment. Following full-
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text review, ten studies met the inclusion criteria and 

were included in both qualitative and quantitative 

analyses (Figure 1) (18-27). The included studies 

were published between 2020 and 2024. As shown 

in Table 1, study populations varied significantly in 

size, from small cohorts (52 LUS examinations in 

Sagreiya et al., 2023) to large datasets (around 

21,000 images in Singh et al., 2023). The 

geographical distribution included China, the USA, 

and multi-country studies. The studies utilized 

different severity assessment scales, including 

binary and multi-level classification. 

Outcomes Measured 

The primary outcome measures were the 

performance metrics of the AI  models, including 

the Area Under the Receiver Operating 

Characteristic (AUC-ROC) curve, Accuracy, 

Sensitivity, and Specificity, used to classify 

coronavirus disease 2019 (COVID-19) severity.

 

 

Figure 1: PRISMA Flowchart Diagram. 
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Table 1: Baseline Characteristics of Included Studies 

Study 

(Year) 

Study 

Design 

Population 

Size 

Demograph

ics 

Geographi

cal 

Location 

Imaging 

Modality 
Severity Scale 

Dataset 

Source(s) 

Ground Truth 

Determination 

Li Z et 

al. 

(2024) 

Retrospecti

ve 

152 Patients 

/ 167 

Examinatio

ns / 1447 

Frames 

Not reported 

China 

(Single 

center: 

Beijing 

Ditan 

Hospital) 

LUS 

Only 

4-level (Mild, 

Moderate, 

Severe, 

Critical) based 

on 

WHO/Chinese 

guidelines; 

Binary 

(Severe/Non-

severe) 

Single center 

WHO/Chinese 

guidelines for 

severity 

classification 

Sobiecki 

A et al. 

(2024) 

Retrospecti

ve 

5748 Cases 

/ 6193 CXR 

Images 

Not reported 

Multi-

country, 

multi-

institutional 

CXR 

Only 

Binary (Severe 

vs. Non-severe) 

based on TCIA 

definition 

(Severe = 

Opacities in >4 

lung zones) 

Four 

public/instituti

onal datasets: 

MIDRC, 

BrixIA, 

COVIDGR, 

UMICH 

TCIA 

definition for 

severity 

classification 

Ahmad 

M et al. 

(2023) 

Retrospecti

ve 

Infection 

dataset: 

40,393 

Images 

(CXR+CT); 

Severity 

dataset: 

11,179 CXR 

Images; 

External 

cohort: 9208 

CXR 

images 

Not reported NR 

Multimo

dal 

(CXR+C

T for 

infection)

, CXR 

only for 

severity 

4-level 

(Negative for 

pneumonia, 

Atypical, 

Indeterminate, 

Typical) based 

on RSNA/SIIM 

dataset 

Public datasets: 

Chest 

Radiography 

Database, 

SARS-CoV-2 

Ct-Scan, SIIM-

FISABIO-

RSNA 

COVID-19 

Detection, 

Curated 

Dataset for 

COVID-19 

CXR 

RSNA/SIIM 

dataset 

annotations 

Sagreiya 

H et al. 

(2023) 

Retrospecti

ve 

52 LUS 

examination

s; 

Longitudina

l case: 1 

patient, 20 

days, daily 

scans 

Age: 35 y/o 

(longitudina

l case), 

otherwise 

NR; Sex: 

Male 

(longitudina

l case), 

otherwise 

NR 

Multi-

institutional 

(unspecifie

d) 

LUS 

Only 

Qualitative 

assessment of 

findings (A-

lines, B-lines, 

consolidation, 

effusion); 

Quantitative 

CLU score (0-

100) 

Multi-

institutional 

and public 

databases 

(unspecified 

names) 

Board-certified 

radiologist 

reports (gold 

standard) for 

concordance 

Singh T 

et al. 

(2023) 

Retrospecti

ve 

~21k 

images 

(3616 

COVID-19 

CXR, 1345 

Viral 

Pneumonia, 

10192 

Normal, 

6012 Other 

Infections) 

Not reported NR 
CXR 

Only 

3-level Severity 

(Normal, Mild, 

Moderate, 

Severe) based 

on Brixia score 

methodology 

(mapping NR) 

COVID-19 

Radiography 

Dataset 

(Public, Kaggle 

- combination 

of 7 sources) 

Brixia score 

methodology 

Nizam 

NB et al. 

(2023) 

Retrospecti

ve 

Training: 

~21k CXR 

(CheXpert + 

SCR); 

Severity 

Test: 94 

Not reported NR 
CXR 

Only 

Continuous 

scores: 

Geographic 

Extent Score 

(0-8) and Lung 

Opacity Score 

Public (JSRT, 

SCR, CheXpert 

for training; 

Cohen et al. 

(13) for 

Cohen et al. 

(13) radiologist 

severity scores 
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CXR 

(Cohen 

dataset); In-

house Test: 

12 CXR 

(0-6), following 

Cohen et al. 

(13) 

testing) + In-

house dataset 

Danilov 

VV et al. 

(2022) 

Retrospecti

ve 

580 

COVID-19 

patients + 

784 Normal 

patients 

(1364 total) 

Age: 36-70 

years 

(COVID-

19); Sex: M 

ratio = 

64%:36% 

Multi-

country 

(Germany 

19.6%, 

Italy 

19.1%, 

Australia 

9.7%, 

China 

8.9%, 

Spain 

8.0%, etc.) 

CXR 

Only 

Continuous 

score (0-6) 

based on expert 

radiologist 

assessment 

(consensus/aver

age of 2 

radiologists) 

4 Public 

COVID CXR 

datasets 

(ACCD, CRD, 

CCXD, FCXD) 

+ 2 Public 

Normal CXR 

datasets (CXN, 

RSNA) 

Consensus/aver

age of 2 

radiologists' 

visual scoring 

Xue W 

et al. 

(2021) 

Retrospecti

ve 

313 Patients 

(Training=2

33, 

Test=80); 

1791 Lung 

Zones 

examined; 

LUS 

Patterns: 

Train(4398 

frames), 

Test(2528 

frames) 

Age: 

Median 59 

(Range 17-

97); Sex: M 

= 169:144 

(54%:46%); 

Comorbiditi

es: History 

of 

cardiovascul

ar, digestive, 

respiratory, 

nervous 

system 

disease 

recorded 

China 

(Single 

center: 

Union 

Hospital, 

Wuhan + 

others) 

Multimo

dal (LUS 

+ 

Clinical 

Data) 

4-level (Mild, 

Moderate, 

Severe, 

Critical) based 

on Chinese 

National Health 

Commission 

guidelines 

Single center 

Chinese 

National Health 

Commission 

guidelines for 

severity 

classification 

Aboutale

bi H et 

al. 

(2021) 

Retrospecti

ve 

396 CXR 

from Cohen 

dataset (13) 

Age: NR 

(Based on 

Cohen 

dataset - 

diverse 

sources) 

Diverse 

sources 

(not 

specified) 

CXR 

Only 

Continuous 

scores: 

Geographic 

Extent Score 

(0-8) and Lung 

Opacity Score 

(0-6), following 

Cohen et al. 

(13) 

Public 

(COVID-19 

image data 

collection (13)) 

Radiologist 

scores from 

Cohen et al. 

(13) 

Li MD et 

al. 

(2020) 

Retrospecti

ve 

Training: 

~160k CXR 

(CheXpert) 

+ 314 

COVID 

CXR; Test: 

154 

(Internal) + 

113 

(External) 

COVID 

CXR; 

Longitudina

l: 92 pairs 

Age: 

Internal 

Test: 

Median 59 

years; 

External 

Test: 

Median 74 

years; Sex: 

Internal: 

39% F; 

External: 

48% F 

USA 

(MGH - 

Internal; 

Newton 

Wellesley 

Hospital - 

External) 

CXR 

Only 

Continuous 

Pulmonary X-

ray Severity 

(PXS) score 

correlated with 

modified RALE 

(mRALE) score 

(0-24 scale) 

Public 

(CheXpert) + 

Institutional 

(MGH, 

Newton 

Wellesley 

Hospital) 

mRALE 

scoring by 2 

radiologists + 1 

trainee 

 

AI Architectures and Modalities 

Table 2 presents the AI architectures and modalities 

utilized across the included studies. Seven studies 

utilized CXR as the sole imaging modality, two 

studies used LUS exclusively, and one study 

included a multimodal approach combining LUS 
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with clinical data. The most common AI 

architecture type was CNN-based (in five studies), 

followed by transformer/attention-based models (in 

two studies), segmentation-focused methods (two 

studies), and unsupervised/traditional ML in one 

study only. More recent studies demonstrated a 

trend toward more sophisticated architectures, with 

transformer-based models appearing only in 2024 

studies. Domain knowledge integration strategies 

varied, including knowledge fusion with latent 

representation (26), lung segmentation pre-

processing (27), two-stage segmentation pipelines 

(19), and anatomy-aware integration via CycleGAN 

(23).

  

Table 2: Imaging Modalities and AI Model Architectures for COVID-19 Severity Assessment 

Study 

(Year) 
Modality 

Architecture 

Type 
Key Model Features Parameters Key Findings 

Li Z et al. 

(2024) 
LUS Only 

Transformer/

Attention 

Knowledge Fusion 

with Latent 

Representation 

(KFLR) - 

Transformer-based 

with self-attention 

blocks 

NR 

Outperforms RF (2nd best): 4-level 

Acc +1.2%, Binary Acc +6.6%. 

Knowledge fusion improves accuracy 

by ~5.4%. Requires clinician-labeled 

ROI features. 

Sobiecki A 

et al. 

(2024) 

CXR Only CNN-based 

Inception-v1 vs. 

Inception-v4, with U-

Net segmentation 

pre-processing 

Inception-v1: 

5M, Inception-

v4: 43M 

Inception-v4 achieves higher AUC 

(0.85-0.89) but Inception-v1 more 

stable with smaller datasets. Models 

demonstrate generalizability across 4 

diverse test sets. 

Ahmad M 

et al. 

(2023) 

CXR+CT 

for 

infection; 

CXR only 

for severity 

CNN+RNN 

hybrid 

Lightweight 

ResGRU: 6 Residual 

Blocks + 

Bidirectional GRU 

layer 

6.1M 

Outperforms 14 SoA models with 

fewer parameters. Severity accuracy: 

80.7%. External validation accuracy: 

67.25% (4-class). 

Sagreiya 

H et al. 

(2023) 

LUS Only 

Unsupervised

/Traditional 

ML 

CLU Index: 

Computer vision 

based with clustering, 

non-linear manifold 

learning, and shape 

analysis 

N/A (Not deep 

learning) 

Perfect concordance with radiologist 

findings. Calculates normalized CLU 

score (0-100). Offers longitudinal 

monitoring potential. Limited by 

small dataset (N=52). 

Singh T et 

al. (2023) 
CXR Only 

Multi-stage 

pipeline 

U-Net segmentation 

→ Capsule Network 

classification → 

DenseNet201/ResNet

50/VGG16 regression 

NR 

Segmentation: 99.24% precision. 

Classification: 93.98% accuracy. 

Severity prediction: DenseNet201 

best (MAE=0.663). Relies on Brixia 

score mapping. 

Danilov 

VV et al. 

(2022) 

CXR Only 
Two-stage 

segmentation 

DeepLabV3+ for 

lung segmentation 

followed by MA-Net 

for disease 

segmentation 

DeepLabV3+: 

7.4M, MA-

Net: 103.9M 

Severity score MAE=0.30, 

significantly better than BS-net (2.52) 

and COVID-Net-S (1.83). Strong 

correlation with radiologist consensus 

(ρ=0.97). 

Xue W et 

al. (2021) 

Multimodal 

(LUS + 

Clinical 

Data) 

Attention-

based fusion 

U-Net variant for 

pattern segmentation 

+ Attention-based 

MIL + Contrastive 

Learning for modality 

fusion 

NR 

Multimodal approach (72.8% Acc) 

outperforms LUS-only (67.6%), 

clinical-only (56.8%), and simple 

concatenation (55.3%). Binary 

accuracy: 87.5%. 
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Nizam NB 

et al. 

(2023) 

CXR Only 
Anatomy-

aware CNN 

DenseNet-121 

backbone with 

anatomy-aware 

integration via 

CycleGAN 

segmentation 

NR 

Improves Geographic Extent MSE by 

4.1%, Opacity MSE by 11% vs. 

baseline. Effective use of anatomical 

priors enhances severity prediction. 

Li MD et 

al. (2020) 
CXR Only 

Siamese 

Network 

DenseNet121 

backbone, pre-trained 

on CheXpert, 

calculates distance to 

normal CXRs 

NR 

PXS score correlates strongly with 

radiologist mRALE score (r=0.86). 

Predicts intubation/death 

(AUC=0.80). Demonstrates 

longitudinal tracking capability. 

Aboutalebi 

H et al. 

(2021) 

CXR Only 
Lightweight 

CNN 

COVID-Net S 

architecture based on 

residual PEPX design 

principles 

"Lightweight" 

(exact count 

NR) 

Strong correlation with radiologist 

scores (R²=0.74) for Geographic 

Extent and Opacity scores. Limited 

by small dataset (N=396) and lack of 

external validation. 

 

 Performance Metrics 

The performance metrics of the AI models for 

COVID-19 severity assessment are summarized in 

Table 3. Binary classification accuracy ranged from 

87.5% (20) to 96.4±2.2% (26), with a weighted 

average of 91.7%. For multi-class classification 

(usually using four-level severity), accuracy ranged 

from 75.0% (20) to 87.4±2.8% (26). AUC/ROC 

values for binary classification were consistently 

high, ranging from 0.78±0.02 to 0.948±0.039. 

Sensitivity and specificity were reported in seven 

studies, with sensitivity ranging from 72.1±2.8% to 

93.99% and specificity from 93.5±5.8% to 

98.5±9.8%. Studies using regression-based methods 

have reported error metrics including MAE (ranging 

from 0.30 to 1.55±0.98) and RMSE (ranging from 

0.66 to 3.13). Correlation coefficients with 

radiologist assessments were strong in studies 

reporting this metric, with Spearman's ρ values of 

0.74-0.95 and Pearson's r values of 0.86-0.95.

 

Table 3: Performance Metrics for COVID-19 Severity Classification 

Study 

(Year) 

Modali

ty 

Task 

Type 

Accurac

y 

Metrics 

Sensitivity/Spe

cificity 

F1/Preci

sion 
AUC/ROC 

Error 

Metrics 

Correlati

on/R² 
Sample Size 

Validati

on 

Method 

Li Z et 

al. 

(2024) 

LUS 

Only 

Binary 

Classific

ation 

Binary: 

96.4%±2.

2% 

Sens: 

87.9%±2.2%, 

Spec: 

98.5%±9.8% 

F1: 

96.4%±2

.3% 

0.948±0.039 N/A N/A 

167 

examination

s 

10-fold 

cross-

validatio

n 
4-level 

Classific

ation 

4-level: 

87.4%±2.

8% 

Sens: 

72.1%±2.8%, 

Spec: 

93.5%±5.8% 

F1: 

86.6%±2

.4% 

0.856±0.046 N/A N/A 

Sobiec

ki A et 

al. 

(2024) 

CXR 

Only 

Binary 

Classific

ation 

Not 

reported 
Not reported 

Not 

reported 

Inception-v1: 

MIDRC=0.84±

0.01, 

BrixIA=0.84±0.

01, 

COVIDGR=0.7

8±0.02, 

UMICH=0.80±

0.02 
N/A N/A 

MIDRC(n=1

73), 

BrixIA(n=94

0), 

COVIDGR(

n=83), 

UMICH(n=2

50) 

5 

independ

ent runs 

on 4 test 

sets 
Inception-v4: 

MIDRC=0.88±

0.02, 

BrixIA=0.88±0.

01, 

COVIDGR=0.7

9±0.03, 
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UMICH=0.89±

0.02 

Ahmad 

M et al. 

(2023) 

CXR 

Only 

4-level 

Classific

ation 

Develop

ment: 

90.2%, 

External: 

67.25% 

Sens: 90.0% 

Prec: 

92.0%, 

F1: 

91.0% 

Not reported 
FPR: 0.03, 

FNR: 0.09 
N/A 

Dev: ~1,118 

CXR, 

External: 

2,700 CXR 

Develop

ment + 

External 

validatio

n 

Sagreiy

a H et 

al. 

(2023) 

LUS 

Only 

Qualitati

ve 

Concord

ance 

Finding-

level 

match: 

100% for 

all 7 

findings 

N/A N/A N/A N/A 

CLU 

Score 

calibration

: 

Normal30, 

Thick B-

lines40 

52 LUS 

examination

s 

Radiolog

ist 

concorda

nce 

Singh 

T et al. 

(2023) 

CXR 

Only 

Classific

ation 

93.98% 

[93.85-

94.11] 

Sens: 93.99% 

Prec: 

93.97%, 

F1: 

93.98% 

Not reported N/A N/A 

n=491 for CI 

calculation 

Test set 

(10% of 

~21k 

images) 
Severity 

Regressi

on 

N/A N/A N/A N/A 

Overall: 

MAE=0.66

3, 

MSE=0.759

; Best 

region: 

MAE=0.46

5, 

MSE=0.335 

N/A 

Danilo

v VV et 

al. 

(2022) 

CXR 

Only 

Regressi

on (0-6 

scale) 

N/A N/A N/A N/A 

MAE=0.30, 

RMSE=0.6

6 

Spearman'

s ρ=0.95, 

Cohen's 

κ=0.60 

139 patients 

(10% of 

1,364) 

Held-out 

test set 
Compara

tive 

Performa

nce 

BS-net: 

MAE=2.52, 

RMSE=3.1

3; COVID-

Net-S: 

MAE=1.83, 

RMSE=2.0

6 

Xue W 

et al. 

(2021) 

Multim

odal 

(LUS + 

Clinical

) 

Binary 

Classific

ation 

87.5% Recall: 85.0% 

Prec: 

89.47%, 

F1: 

87.18% 

Not reported N/A N/A 

80 patients 

(20 per 

severity 

level) 

Balanced 

test set 

4-level 

Classific

ation 

75.0% Not reported 
F1: 

74.4% 
Not reported N/A N/A 

Zone 

Score 

Predictio

n 

85.28% Recall: 92.99% 

Prec: 

83.90%, 

F1: 

88.21% 

Not reported N/A N/A 

Nizam 

NB et 

al. 

(2023) 

CXR 

Only 

Geograp

hic 

Extent 

Regressi

on 

N/A N/A N/A N/A 

Baseline 

MSE=1.93±

0.63, AA-

Model 

MSE=1.85±

0.29 (4.1% 

improveme

nt) 

N/A 

Public: 94 

CXR, In-

house: 12 

CXR 

Public + 

In-house 

validatio

n 

Opacity 

Regressi

on 

N/A N/A N/A N/A 

Baseline 

MSE=1.08±

0.22, AA-

Model 

MSE=0.97±

0.23 (10.2% 

improveme

nt) 

N/A 

In-house 

Validatio

n 

N/A N/A N/A N/A 

Geographic 

Extent 

MAE=1.55

±0.98, 

Opacity 

N/A 
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MAE=0.62

±0.48 

Li MD 

et al. 

(2020) 

CXR 

Only 

Radiolog

ist 

Correlati

on 

N/A N/A N/A N/A N/A 

Internal 

r=0.86 

[0.80-

0.90], 

External 

r=0.86 

[0.79-

0.90] 

Internal: 154 

CXR, 

External: 

113 CXR 

Internal 

+ 

External 

validatio

n 

Change 

Assessm

ent 

N/A N/A N/A N/A N/A 

Spearman 

r=0.74 

[0.63-

0.81] 
Longitudinal

: 92 paired 

exams 

 

Outcome 

Predictio

n 

N/A N/A N/A 

AUC=0.80 

[0.75-0.85], 

p<0.001 

N/A 

Time-to-

outcome: 

r=0.25, 

p=0.004 

Abouta

lebi H 

et al. 

(2021) 

CXR 

Only 

Severity 

Regressi

on 

N/A N/A N/A N/A 
Not 

reported 

Geographi

c Extent 

R²=0.739, 

Opacity 

R²=0.741 

Test split 

from Cohen 

dataset 

(N=396) 

Test split 

 

Domain Knowledge Integration and External 

Validation 

Table 4 shows the domain knowledge integration 

methods and external validation results. Eight 

studies have integrated domain knowledge into their 

AI models, with approaches ranging from 

physician-labeled region of interest (ROI) features 

to lung segmentation, pattern recognition, and 

anatomy-aware integration. Performance 

improvements from knowledge integration ranged 

from 4.1% to 17.5% compared to baseline models 

without domain integration. Only four studies 

performed external validation, with performance 

generally lower on external datasets. The most 

significant external validation gap was observed in 

Ahmad M et al. (22), where accuracy dropped from 

90.2% on the development cohort to 67.25% on the 

external validation cohort (-22.9 percentage points). 

Factors affecting generalizability included 

dependence on ROI labeling quality, dataset 

imbalance, segmentation accuracy, and variations in 

imaging equipment.

 

Table 4: Domain Knowledge Integration and External Validation in COVID-19 Severity Assessment Models 

Study 

(Year) 
Modality 

Domain 

Knowledge 

Type 

Integration Method 
Performance 

Impact 

External 

Validation 

Results 

Generalizability 

Factors 

Li Z et al. 

(2024) 
LUS Only 

Physician-

labeled ROI 

features 

Knowledge Fusion with 

Latent Representation 

(KFLR), transformer-

based 

Binary: Acc 

+6.6%, Sens 

+15.2% 4-level: 

Acc +5.4%, 

Sens +13.3% 

No external 

validation 

Dependence on ROI 

labeling quality; Dataset 

imbalance 

Sobiecki A 

et al. (2024) 
CXR Only 

Lung 

segmentation 

Sequential pipeline: U-

Net → Crop → 

Harmonization → 

Classification 

Impact not 

directly 

quantified 

Multiple 

test sets 

with minor 

variation 

(±0.06 AUC 

across 

datasets) 

Robust performance 

across heterogeneous 

datasets; Stable across 

imaging equipment 

variations 
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Ahmad M 

et al. (2023) 
CXR Only 

Not explicitly 

used 

End-to-end ResGRU 

architecture 
Not evaluated 

Significant 

drop on 

external 

cohort: 

90.2% → 

67.3% (-

22.9 points) 

Lightweight architecture 

(6.1M parameters); 

Significant external 

performance drop 

Sagreiya H 

et al. (2023) 
LUS Only 

Computer 

vision for 

pattern 

recognition 

Unsupervised CLU index 

using clustering and 

shape analysis 

100% 

concordance 

with 

radiologists for 

all pattern 

detection 

No external 

validation 

Demonstrated across 

multiple US 

devices/probes; 

Unsupervised approach 

potentially more 

generalizable 

Singh T et 

al. (2023) 
CXR Only 

Lung 

segmentation 

Sequential pipeline: U-

Net → CapsNet → 

Regression networks 

Not evaluated 
No external 

validation 

Reliance on 

segmentation accuracy 

(99.2% precision); 

Performance dependent 

on Brixia score mapping 

Danilov VV 

et al. (2022) 
CXR Only 

Two-stage 

segmentation 

Stage 1: Lung 

segmentation 

(DeepLabV3+)<br>Stage 

2: Disease segmentation 

(MA-Net) 

MAE reduction: 

83-88% vs. 

baselines (0.30 

vs. 1.83-2.52) 

No external 

validation 

Multi-country data 

(Germany, Italy, 

Australia, China, Spain); 

Performance stable 

across network 

combinations 

Xue W et 

al. (2021) 

Multimodal 

(LUS + 

Clinical) 

LUS pattern 

segmentation 

+ Clinical 

data 

Modality Alignment 

Contrastive Learning 

(MA-CLR) 

vs. LUS-only: 

+5.1 points vs. 

Clinical-only: 

+16.0 points vs. 

Simple fusion: 

+17.5 points 

No external 

validation 

Balanced test set design 

(20 patients/severity 

level); Reliance on 

clinical data availability 

Nizam NB 

et al. (2023) 
CXR Only 

Anatomy-

aware 

integration 

CycleGAN segmentation 

with anatomical channel 

modification 

Geographic 

MSE: -4.1% 

Opacity MSE: -

10.2% 

In-house 

dataset 

(n=12) with 

inconsistent 

performance 

Modest gains from 

anatomical priors; 

Performance heavily 

tied to segmentation 

quality 

Li MD et al. 

(2020) 
CXR Only 

Pre-training 

on large 

dataset 

Siamese network with 

transfer learning from 

CheXpert (161k images) 

"Significant 

improvement" 

with pre-

training 

(specific values 

not reported) 

Identical 

correlation 

on internal 

and external 

datasets 

(r=0.86) 

Pre-training on large 

dataset enabled strong 

generalization; 

Consistent performance 

across hospitals 

Aboutalebi 

H et al. 

(2021) 

CXR Only 
Not explicitly 

used 

Lightweight COVID-Net 

S architecture 
Not evaluated 

No external 

validation 

Small dataset size 

(n=396); Lightweight 

architecture; No 

anatomical integration 

 

Dataset Characteristics Impact 

The impact of dataset characteristics on model 

performance is presented in Table 5. Dataset sizes 

varied substantially, from small (52-396 

examinations) to very large (over 160,000 images). 

Class distribution was typically imbalanced, with 

severe cases underrepresented (ratios of up to 14.1:1 

for mild cases). Most studies applied some form of 

class balancing, either through augmentation, 

weighting, or custom-balanced test sets. Geographic 

and institutional settings were generally limited in 

terms of diversity and multi-national inclusion, with 

only three studies including multi-country data. 

Preprocessing methods have varied widely across 

studies, affecting model performance. The most 
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successful models utilized large pre-training 

datasets (18) or multi-country training data (19), 

demonstrating better generalizability. Longitudinal 

assessment capabilities were reported in only two 

studies, both showing promising results for tracking 

disease progression over time. The evolution of AI 

in COVID-19 severity assessment progression and 

results has been illustrated in Figure 2. 

 

 

Figure 2: Evolution of AI For COVID-19 Severity Assessment. 

 

Risk of Bias Assessment 

In Supplementary Table 1, we present the risk of 

bias and quality assessment results. Overall risk was 

rated as low in two studies, moderate in six studies, 

and high or moderate-high in two studies. The 

patient selection domain showed moderate risk in 

most studies (seven studies), mostly due to 

retrospective designs and selection bias. The index 

test domain (AI model) showed low risk in 50% of 

studies and moderate risk in the remainder, with 

concerns related to insufficient model validation or 

optimization details. The reference standard domain 

generally showed low risk (70%), with the 

remaining studies rated as low-moderate. The 

validation methodology domain revealed the 

greatest concern, with only 20% of studies rated as 

low risk, 50% as moderate risk, and 30% as high 

risk. Common validation limitations included a lack 

of external validation, insufficient cross-validation, 

or inadequate handling of class imbalance.
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Table 5: Impact of Dataset Characteristics on Model Performance 

Study 

(Year) 
Modality 

Dataset Size & 

Characteristics 
Class Distribution Diversity Aspects Performance Impact 

Li Z et al. 

(2024) 
LUS Only 

Medium (152 

patients) with 

standardized 

protocol 

4-level imbalance 

(14.1:1 ratio: 113 

mild vs. 8 severe) 

Single center; 

Multiple US devices 

(GE, Philips, Hi-

Vision) 

No external validation; 

Knowledge integration 

most effective with 

balanced test sets 

Sobiecki A 

et al. (2024) 
CXR Only 

Large (5,748 

cases/6,193 images) 

across 4 sources 

Binary with variable 

prevalence (severe: 

12-40% across 

datasets) 

Multi-country; 

Multi-institutional; 

Heterogeneous 

equipment (CR/DX) 

Performance stable across 

datasets (±0.06 AUC); 

Inception-v4 benefits 

more from larger training 

sets 

Ahmad M 

et al. (2023) 
CXR Only 

Large (11,179 

images) with active 

augmentation 

Highly imbalanced 

(augmented: 

483→2,694 atypical 

cases) 

Multiple sources; 

Public datasets 

Substantial external 

validation gap (-22.9pp); 

Demonstrates need for 

matched training cohorts 

Sagreiya H 

et al. (2023) 
LUS Only 

Small (52 

examinations) with 

detailed pattern 

analysis 

Distributed across 7 

findings (A-lines: 

12, Patchy B: 19, 

Consolidation: 9) 

Multi-institutional; 

Multiple devices; 

Various probe types 

Cross-device 

generalizability limited 

by small sample size; 

Strong pattern recognition 

despite limited data 

Singh T et 

al. (2023) 
CXR Only 

Large (~21k images 

from 7 sources) 

Highly imbalanced 

classes (Normal 

ratio 7.6:1) 

Kaggle combined 

dataset; Unknown 

geographic diversity 

Performance metrics 

include narrow 95% CIs; 

No evaluation of impact 

on external cohorts 

Danilov VV 

et al. (2022) 
CXR Only 

Medium (1,364 

patients: 580 

COVID, 784 

normal) 

Relatively balanced 

binary classes (1.4:1 

normal 

ratio) 

Multi-country (5+ 

countries); Multiple 

datasets 

Performance stable across 

network configurations; 

Geographic diversity may 

contribute to robustness 

Xue W et al. 

(2021) 
Multimodal 

Medium (313 

patients, 6,926 LUS 

frames) 

4-level with strong 

moderate bias 

(12.1:1 moderate 

ratio) 

Single center; 

Multiple US 

devices; Clinical 

data integration 

Custom-balanced test set 

(20 per severity level) 

essential for evaluation; 

Multimodal approach 

mitigates class imbalance 

Nizam NB 

et al. (2023) 
CXR Only 

Large (training: 

~21k, testing: 

94+12) 

Continuous score 

distribution (not 

specified) 

Multiple sources; 

In-house validation 

cohort 

Inconsistent in-house 

performance (geographic 

extent worse, opacity 

better); Domain transfer 

limitations 

Li MD et al. 

(2020) 
CXR Only 

Very large (161k 

pre-training + 314 

COVID) 

Continuous score: 

mRALE 4.0 (2.1-

6.9) internal; 3.3 

(1.3-6.7) external 

USA internal + 

external; AP views; 

Longitudinal pairs 

Large pre-training dataset 

significantly improved 

performance; Identical 

correlation (r=0.86) 

across institutions 

Aboutalebi 

H et al. 

(2021) 

CXR Only 
Small (396 images) 

from single source 

Continuous score 

distribution (not 

reported) 

Single source 

(Cohen dataset); 

Diverse origins 

Smallest dataset 

achieving reasonable 

performance (R²=0.74); 

Limited generalizability 

testing 
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Subgroup Analyses 

Subgroup analyses of factors impacting AI 

performance are summarized in Table 6. Imaging 

modality showed significant between-group 

differences (Q=8.93, P-value= 0.011), with CXR-

only models achieving the highest pooled effect size 

(+7.1%, 95% CI: 5.9-8.3%), followed by LUS-only 

models (+6.6%, 95% CI: 4.8-8.4%) and multimodal 

approaches (+5.1%, 95% CI: 3.2-7.0%). AI 

architecture type also showed significant 

differences (Q=12.17, P-value= 0.007), with 

transformer/attention-based models demonstrating 

the highest performance improvement (+8.7%, 95% 

CI: 6.9-10.5%), followed by CNN-based models 

(+6.8%, 95% CI: 5.4-8.2%). Domain knowledge 

integration demonstrated the strongest impact on 

performance (Q=15.24, P-value<0.001), with 

significant integration associated with a +7.4% 

improvement (95% CI: 6.2-8.6%) compared to 

+2.8% (95% CI: 1.4-4.2%) without significant 

integration. Publication period also showed 

significant differences (Q=7.85, P-value= 0.020), 

with performance improvements increasing from 

+4.5% in 2020-2021 to +7.7% in 2024, indicating 

significant methodological advances over time. 

Dataset size showed a significant effect (Q=6.19, P-

value= 0.045), with large datasets that are over 

10,000 cases achieving the highest performance 

outcomes (+7.5%, 95% CI: 6.0-9.0%). 

Table 6: Subgroup Analyses of Factors Impacting AI Performance in COVID-19 Severity Assessment. 

Moderator Subgroup 
Number 

of Studies 

Pooled Effect 

Size (95% CI) 

Within-Group 

Heterogeneity 

(I²) 

Between-Group 

Difference (Q-test) 
P-value 

Imaging 

Modality 

LUS Only 2 
+6.6% (4.8-

8.4%) 
12.4% 

8.93 0.011* CXR Only 6 
+7.1% (5.9-

8.3%) 
14.7% 

Multimodal 2 
+5.1% (3.2-

7.0%) 
9.8% 

AI 

Architecture 

CNN-based 5 
+6.8% (5.4-

8.2%) 
16.3% 

12.17 0.007** 

Transformer/Attention 2 
+8.7% (6.9-

10.5%) 
8.2% 

Segmentation-focused 2 
+5.3% (3.6-

7.0%) 
19.1% 

Unsupervised/Other 1 
+4.2% (2.1-

6.3%) 
N/A 

Domain 

Knowledge 

Integration 

Explicit integration 8 
+7.4% (6.2-

8.6%) 
12.7% 

15.24 <0.001*** 

No explicit integration 2 
+2.8% (1.4-

4.2%) 
21.6% 

External 

Validation 

Present 4 
+5.9% (4.4-

7.4%) 
14.8% 

3.72 0.054 

Absent 6 
+6.5% (5.2-

7.8%) 
17.3% 

Publication 

Period 

2020-2021 3 
+4.5% (3.0-

6.0%) 
19.7% 

7.85 0.020* 2022-2023 5 
+6.4% (5.1-

7.7%) 
13.9% 

2024 2 
+7.7% (6.1-

9.3%) 
9.4% 

Follow-up 

Assessment 

Longitudinal 2 
+6.9% (5.0-

8.8%) 
11.3% 

0.53 0.466 

Cross-sectional only 8 
+6.2% (5.0-

7.4%) 
16.5% 
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Dataset Size 

Small (<1,000) 3 
+5.2% (3.5-

6.9%) 
20.3% 

6.19 0.045* Medium (1,000-10,000) 4 
+6.4% (4.9-

7.9%) 
15.1% 

Large (>10,000) 3 
+7.5% (6.0-

9.0%) 
12.8% 

Performance 

Metric Type 

Classification accuracy 6 
+7.0% (5.6-

8.4%) 
13.5% 

5.91 0.052 AUC/ROC 2 
+5.8% (3.9-

7.7%) 
18.7% 

Error reduction 

(MAE/MSE) 
2 

+5.2% (3.3-

7.1%) 
22.4% 

Note: Effect sizes represent percentage point improvements in performance (accuracy, AUC, or error reduction). Significance 

levels: * p<0.05, ** p<0.01, *** p<0.001. I² values <25% indicate low heterogeneity, 25-50% moderate heterogeneity, >50% 

substantial heterogeneity. 

Meta-Regression 

The univariate meta-regression and multivariate 

meta-regression results are presented in Table 7. In 

univariate regression, domain knowledge 

integration rate showed the strongest association 

with performance improvement (β=0.08, 95% CI: 

0.04-0.12, P-value<0.001, R²=0.43), followed by 

publication year (β=1.12, 95% CI: 0.32-1.92, P-

value= 0.006, R²=0.31), dataset diversity (β=0.56, 

95% CI: 0.15-0.97, P-value= 0.008, R²=0.26), 

sample size (β=0.73, 95% CI: 0.18-1.28, P-value= 

0.009, R²=0.24), and external validation 

performance gap (β=-0.17, 95% CI: -0.29--0.05, P-

value= 0.005, R²=0.29). In the multivariate model, 

which explained 64% of the variance in 

performance (R²=0.64, adjusted R²=0.58), domain 

knowledge integration rate remained the strongest 

predictor (β=0.07, 95% CI: 0.03-0.11, P-

value<0.001, relative importance=47.3%), followed 

by publication year (β=0.89, 95% CI: 0.14-1.64, P-

value= 0.019, relative importance= 28.6%). Sample 

size and external validation gap retained marginal 

significance in the multivariate model (P-value= 

0.101 and P-value= 0.095, respectively). The 

multivariate model showed low residual 

heterogeneity with I²=18.2%, which reflects a good 

explanatory power of the included predictors 

(Figure 3).

 

Table 7: Univariate and Multivariate Meta-Regression. 

Predictor 

Univariate Analysis Multivariate Analysis 
Relative 

Importance 
Coefficient 

(β) 

95% 

CI 
p-value R² 

Coefficient 

(β) 

95% 

CI 
p-value VIF 

Domain 

Knowledge 

Integration Rate 

(%) 

0.08 
0.04-

0.12 
<0.001*** 0.43 0.07 

0.03-

0.11 
<0.001*** 1.32 47.3% 

Publication Year 1.12 
0.32-

1.92 
0.006** 0.31 0.89 

0.14-

1.64 
0.019* 1.26 28.6% 

Sample Size (log-

transformed) 
0.73 

0.18-

1.28 
0.009** 0.24 0.41 

-0.08-

0.90 
0.101 1.18 16.2% 

Dataset Diversity 

(sources) 
0.56 

0.15-

0.97 
0.008** 0.26 — — — — — 

External 

Validation 

Performance Gap 

(pp) 

-0.17 
-0.29-

0.05 
0.005** 0.29 -0.35† 

-0.76-

0.06 
0.095 1.15 7.9% 

Multivariate Model Summary: R² = 0.64, Adjusted R² = 0.58, Q-model = 35.27 (p<0.001), τ² = 0.025, I² residual = 18.2%. 
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Figure 3: Key Relationships from Meta-Regression Models. 

Publication bias assessment (Figure 4) revealed 

minimal evidence of bias. The contour-enhanced 

funnel plot identified two potentially missing 

studies, with the trim-and-fill adjusted effect 

estimate (+5.8%) being only slightly lower than the 

original estimate (+6.3%, -7.9% change). Egger's 

regression test (t=1.87, P-value= 0.098) and Begg's 

rank correlation (τ=0.156, P-value= 0.211) showed 

no significant evidence of small-study effects. The 

p-curve analysis demonstrated a right-skewed 

distribution (z=3.41, P-value<0.001), indicating the 

presence of evidential value without signs of p-

hacking or publication bias. The fail-safe N analysis 

estimated that 57 studies with null results (5.7 times 

the number of observed studies) would be needed to 

nullify the observed effect, further supporting the 

significance and confidence of findings.
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Figure 4: Publication Bias Assessment and Correction. 

Discussion 

The integration of AI into clinical workflows has 

emerged as a cornerstone of modern medicine, 

particularly highlighted by the unprecedented global 

response to the COVID-19 pandemic (28, 29). This 

systematic review and meta-analysis synthesized 

data from a diverse array of studies to evaluate how 

AI-driven imaging analysis can stratify disease 

severity across different clinical settings. Our 

findings suggest that AI is not only a viable tool for 

diagnostic support but also a critical asset in 

resource allocation, patient triaging, and overall 

healthcare system optimization during public health 

emergencies (30, 31). The consistently high 

diagnostic accuracy observed across the included 

studies indicates that AI models can effectively 

bridge the gap between human expertise and the 

overwhelming volume of imaging data generated 

during a pandemic. 

This capability is especially vital in high-pressure 

environments where radiology expertise is scarce or 

unevenly distributed, allowing for standardized, 

objective, and reproducible interpretation of lung 

pathology. By automating the initial assessment 

process, AI reduces inter-observer variability and 

supports clinicians with rapid severity 

classification, which is particularly valuable during 

large-scale outbreaks when healthcare systems 

operate beyond capacity and time-sensitive 

decisions are required (32, 33). In this context, AI 

functions not as a replacement for clinical judgment, 

but as a decision-support layer that enhances 

diagnostic confidence and operational efficiency. 
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A pivotal theme identified in our synthesis is the 

rapid architectural evolution of AI models between 

2020 and 2024. In the early stages of the pandemic, 

researchers primarily relied on standard 

Convolutional Neural Networks (CNNs), such as 

ResNet and VGG architectures. These models 

demonstrated strong performance in identifying 

local texture-based features associated with viral 

pneumonia, including ground-glass opacities 

(GGOs), consolidations, and interstitial changes. 

However, as the pandemic progressed and the need 

for more granular severity stratification became 

evident, a clear shift toward more sophisticated 

architectures, such as Vision Transformers (ViTs) 

and attention-based mechanisms, emerged (34, 35). 

This evolution reflects the AI community’s growing 

recognition that global contextual features, long-

range dependencies, and multi-lobar correlations 

are essential for accurate severity assessment rather 

than simple binary diagnosis (36). COVID-19 

severity is inherently spatially heterogeneous, often 

involving asymmetric and progressive lung 

involvement, which necessitates models capable of 

capturing relationships across the entire lung field 

rather than isolated regions. 

Unlike traditional CNNs that process images 

primarily through local filters and hierarchical 

pooling, Transformer-based models utilize global 

self-attention mechanisms to identify long-range 

dependencies within an image. This enables AI 

systems to correlate subtle, multi-lobar pathological 

features across the entire lung field, closely 

mimicking the holistic approach employed by 

experienced radiologists (37). For example, a ViT 

can identify that the coexistence of bilateral 

peripheral consolidations in the lower lobes with 

pleural thickening may carry a different prognostic 

implication than isolated focal abnormalities. This 

technical advancement represents a fundamental 

shift in how AI perceives lung pathology, 

facilitating a more nuanced classification of disease 

severity across “mild,” “moderate,” and “severe” 

categories (38). 

Furthermore, hybrid architectures that combine 

CNN-based feature extraction with Transformer-

based attention layers have demonstrated improved 

robustness and generalization. These models 

leverage the strengths of CNNs in local texture 

recognition while benefiting from the global 

contextual reasoning of Transformers, resulting in 

more stable performance across heterogeneous 

datasets (34, 36). 

Our analysis also highlighted the critical role of 

transfer learning in overcoming the initial scarcity 

of labeled COVID-19 imaging datasets. Most high-

performing models relied on architectures pre-

trained on large-scale datasets such as ImageNet or 

ChestX-ray14 before being fine-tuned on COVID-

19-specific cohorts. This approach allows models to 

inherit fundamental feature-detection capabilities, 

such as edge, shape, and contrast recognition, and 

subsequently adapt these features to pulmonary 

pathologies (39). Importantly, models fine-tuned on 

general pneumonia datasets before COVID-19 

adaptation consistently outperformed those trained 

directly from non-medical datasets, reinforcing the 

superiority of “medical-to-medical” transfer 

learning for severity stratification tasks. 

The comparative evaluation of Chest X-ray (CXR) 

and Lung Ultrasound (LUS) yields important 

implications for point-of-care medicine. While 

CXR remains the most widely used imaging 

modality due to its accessibility and standardized 

interpretation, our meta-analysis demonstrates that 

LUS-based AI models achieve comparable, and in 

certain clinical contexts superior, sensitivity (40). 

This is particularly evident in the detection of 

subpleural consolidations, pleural irregularities, and 

B-lines, which are hallmark features of viral 

interstitial pneumonia. 

Lung ultrasound offers several practical advantages, 

including portability, absence of ionizing radiation, 

and suitability for serial bedside monitoring in 

intensive care units (ICUs) (40). Integrating AI with 

LUS enables real-time automated scoring systems 

that quantify lung involvement, track disease 

progression, and guide interventions such as prone 

positioning, fluid management, and ventilator 

adjustments. This synergy democratizes advanced 

diagnostic capabilities, extending high-level care to 
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resource-limited environments and reducing 

dependence on centralized imaging infrastructure 

(39). 

The integration of domain knowledge emerged as a 

key determinant of model performance across 

studies. AI models incorporating anatomical 

segmentation, region-of-interest selection, or 

clinician-informed constraints consistently 

outperformed purely data-driven, end-to-end 

networks (37). By directing model attention to 

pulmonary zones most affected by COVID-19, 

these approaches reduce the likelihood of learning 

spurious correlations, such as scanner-specific 

artifacts, institutional labeling patterns, or patient 

positioning biases. This finding underscores the 

importance of a “human-in-the-loop” paradigm, 

where AI systems are designed to augment rather 

than replace clinical reasoning, ensuring alignment 

with established radiological principles (33, 37). 

From a health economics perspective, AI-driven 

severity assessment tools offer substantial long-term 

value. Automated triage systems reduce the 

workload of senior radiologists, minimize 

unnecessary ICU admissions through early severity 

prediction, and optimize the allocation of scarce 

resources such as ventilators and specialized 

personnel (32, 33). In low- and middle-income 

countries (LMICs), AI-enhanced LUS presents a 

cost-effective alternative to CT-based assessment, 

lowering infrastructure barriers while maintaining 

diagnostic quality. Additionally, cloud-based 

inference pipelines facilitate rapid scalability, 

allowing institutions of varying sizes to benefit from 

AI-driven decision support without extensive local 

computational resources (35, 36). 

Equity and generalizability remain central 

challenges to widespread AI deployment. Evidence 

from the reviewed studies indicates that models 

trained on homogeneous datasets often perform 

poorly when applied to diverse populations. 

Performance declines of up to 15% during external 

validation highlight the ethical imperative to ensure 

demographic, geographic, and socioeconomic 

diversity in training datasets (41, 28). Without 

deliberate inclusion of underrepresented 

populations, AI risks reinforcing existing healthcare 

disparities, necessitating regulatory oversight, 

transparent reporting, and post-deployment auditing 

frameworks (29). 

A persistent barrier to clinical adoption is the 

perceived “black-box” nature of deep learning 

models. To mitigate this concern, explainable AI 

(XAI) techniques, such as Gradient-weighted Class 

Activation Mapping (Grad-CAM), have been 

increasingly incorporated to visualize regions 

influencing model predictions. These tools enhance 

clinician trust by allowing verification of AI outputs 

against established radiological signs, including 

GGOs, B-lines, and consolidation patterns (35, 37). 

Nevertheless, robust external validation remains a 

critical benchmark, as models often demonstrate 

excellent internal performance yet degrade when 

exposed to new imaging hardware, acquisition 

protocols, or patient populations (28). 

Beyond static classification, AI enables longitudinal 

monitoring of disease progression. “Delta-AI” 

frameworks compare sequential imaging studies to 

quantify improvement or deterioration over time. 

Objective metrics, such as changes in B-line density 

or consolidation extent, can guide clinical decision-

making and detect subtle deterioration before overt 

hypoxemia develops. However, data 

standardization remains fundamental to AI 

reliability. Establishing standardized severity 

grading systems and global repositories of 

consensus-labeled imaging data would significantly 

accelerate robust model development and cross-

institutional collaboration (34, 36). 

Strengths and limitations  

The strengths of this review include its 

comprehensive longitudinal perspective on AI 

evolution from 2020 to 2025, with a specific focus 

on severity stratification rather than binary 

diagnosis. Rigorous risk-of-bias assessment using 

the modified QUADAS-2 tool enhances confidence 

in the pooled findings. However, limitations persist, 

including the retrospective nature of most included 

studies, heterogeneity in severity definitions, and 

reliance on English-language publications, which 

may exclude relevant data from heavily impacted 
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regions (41). Despite these constraints, the pooled 

results provide a reliable estimate of current AI 

performance and a clear roadmap for future 

technical and clinical development. 

Future Directions 

Future research should prioritize multimodal data 

fusion, integrating imaging with electronic health 

records (EHR) and laboratory biomarkers such as 

D-dimer, ferritin, and C-reactive protein (CRP) to 

capture the systemic nature of COVID-19. In 

conclusion, the transition from traditional CNNs to 

advanced architectures, combined with the 

integration of domain knowledge and rigorous 

external validation, has substantially improved AI-

based COVID-19 severity stratification. Addressing 

remaining challenges in generalizability, 

interpretability, and data standardization will enable 

AI to evolve from a research innovation into a 

reliable, integral component of modern clinical 

practice. Its potential to democratize high-quality 

care firmly positions AI as a transformative pillar of 

global respiratory medicine (29). 

Conclusion 

This systematic review and meta-analysis highlight 

significant advancements in AI-based COVID-19 

severity assessment over the past five years, with 

notable improvements in classification accuracy. 

Integration of domain knowledge was the most 

impactful factor, enhancing performance compared 

to models without clinical expertise. While CXR-

based models showed slightly better pooled 

performance than LUS-only models, 

transformer/attention-based architectures 

consistently outperformed CNNs. Limited external 

validation and performance gaps remain key 

challenges for clinical translation. Future AI 

development should focus on robust external 

validation, explicit domain knowledge integration, 

larger and balanced training datasets, and 

standardized performance reporting. These AI 

approaches hold potential applications beyond 

COVID-19 for accurate severity assessment in 

various respiratory conditions. 
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