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Abstract

The accurate assessment of coronavirus disease 2019 (COVID-19) severity remains a cornerstone for optimized resource
allocation and clinical treatment planning. This systematic review and meta-analysis aimed to evaluate and compare the
diagnostic performance of artificial intelligence (Al) models utilizing chest X-ray (CXR) versus lung ultrasound (LUS)
modalities for COVID-19 severity stratification. Following the PRISMA 2020 guidelines, we conducted a comprehensive
literature search across PubMed, Scopus, Web of Science, and Google Scholar from 2020 through April 2025. Inclusion
criteria specifically targeted studies employing Al for severity assessment, while excluding secondary research, case reports,
and non-English publications. Our analysis of ten selected studies revealed a progressive evolution in model performance
for both binary and multi-class classification tasks. Detailed meta-regression indicated that transformer-based architectures
and domain-specific pre-training contributed to higher sensitivity levels, particularly in early-stage stratification. Although
CXR was the more prevalent modality in the literature, LUS-based Al models exhibited comparable diagnostic efficacy,
offering a portable and radiation-free alternative that enhances clinical workflows in resource-constrained environments and
point-of-care settings. Furthermore, the results indicate that the integration of domain knowledge and the application of
rigorous external validation significantly enhance model generalizability. The analysis underscores a persistent performance
gap in cross-institutional validation, suggesting a need for more diverse training cohorts. We conclude that while Al-driven
CXR and LUS tools show high potential for severity assessment, the path to clinical deployment necessitates standardized
external validation and the fusion of multi-modal clinical data to ensure robust predictive accuracy in diverse healthcare
settings.
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Introduction

The COVID-19 pandemic presented significant
challenges to healthcare systems all over the world,
necessitating the rapid development of tools for
disease severity assessment and prognosis (1).
Artificial Intelligence (Al) appeared as a promising
strategic technology to augment clinical decision-
making by analyzing medical imaging data,
particularly chest X-ray (CXR) and lung ultrasound
(LUS), in addition to other indications and uses in
medical and healthcare settings (2). Despite
dedicated research activity and multiple studies
published about COVID-19 since 2020 to date,
significant heterogeneity exists in the studies'
methodologies, with varying claims regarding
performance and utility across different imaging
modalities.

Accurate assessment of COVID-19 severity is
important for appropriate resource allocation,
treatment planning, and prognostication. While the
scoring systems, such as the Sequential Organ
Failure Assessment (SOFA) score and laboratory
markers like D-dimer levels, provide valuable
information, they often require serial measurements
and may lag behind radiographic changes (3-4)
Medical imaging offers supplementary information
about lung involvement that may precede further
deterioration, making it highly valuable for early
intervention. However, interpretation of imaging
findings in certain cases may necessitate specialized
expertise, creating bottlenecks in high-volume
settings, resource-limited environments, and loaded
settings (5).

Al-based approaches have been developed to help
in addressing these challenges by automating the
analysis of CXR and LUS images whenever
feasible. CXR represents the most widely available
imaging modality, which offers full visualization of
lung fields but limited sensitivity for early or minute
changes in the early stages of some cases (6).
Controversially, LUS provides better
characterization of pleural and subpleural
abnormalities, with the advantages of portability,
lack of radiation, and suitability for serial
monitoring; however, it has a more limited field of
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view. The relative performance of Al models across
these modalities remains incompletely understood,
as does the impact of methodological factors such as
architecture selection, dataset characteristics, and
domain knowledge integration (7).

Previous studies have investigated multiple aspects
of Al for COVID-19 diagnosis or classification, but
none have precisely focused on analyzing the
severity  assessment  specifically, compared
performance across imaging modalities, or
evaluated the advancements of technologies and
strategies over time. In addition to that, the impact
of domain knowledge integration on model
performance and the reliability of external
validation has not been sufficiently addressed yet
(8-13). These gaps limit our understanding of the
most effective options and hinder clinical
translation of these promising technologies.

In this study, we aim to conduct a systematic review
and meta-analysis to include studies that have
evaluated Al-based approaches for COVID-19
severity assessment since the emergence of the
COVID-19 pandemic in 2020. We look forward to
and aspire to provide a detailed synthesis of the
current evidence regarding Al-based severity
assessment in COVID-19, identifying the most
effective approaches, quantifying the factors
associated with improved performance, and
highlighting the important areas for further
consideration. These insights can guide both
technical development and clinical applications of
Al tools for respiratory infection management that
can also be useful even when extending beyond
COVID-19 to other respiratory conditions.

Methods
Search Strategy

We performed a search of the literature published
from the emergence of the COVID-19 pandemic in
2020 to April 30, 2025, following the Preferred
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) 2020 guidelines (14). The
search was performed across multiple electronic
databases, including PubMed/MEDLINE, Scopus,
Web of Science, and Google Scholar. We developed
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a keyword-based search strategy using a
combination of Medical Subject Headings (MeSH)
terms and free-text keywords related to three main
concepts: COVID-19, artificial intelligence, and
severity assessment. For COVID-19, we used terms
such as "COVID-19," "SARS-CoV-2," "novel
coronavirus,"” "2019-nCoV," and "coronavirus

disease 2019." For artificial intelligence, we
included  “artificial intelligence,” "machine
learning,” "deep learning,” “neural network,"

"convolutional neural network,” "support vector
machine,” "random forest,"” "transformer,” and
"computer-aided.” For severity assessment, we used
terms such as "severity," "prognosis,” "prediction,"
"classification," “stratification,"” “critical,”
"moderate,” "mild,"” "“scoring,” and "grading."
Additionally, we included imaging-specific terms
such as "chest X-ray," "CXR," "radiograph,” "lung
ultrasound,” "LUS," and "point-of-care ultrasound.”
These search terms were combined using Boolean
operators "AND" and "OR" as appropriate.

Eligibility Criteria

Studies were eligible for inclusion if they met the
following criteria: (1) focused on COVID-19
patients with confirmed diagnosis; (2) developed or
validated Al-based models for assessing COVID-19
severity using CXR, LUS, or both; (3) provided
quantitative performance metrics for severity
assessment; (4) were original research articles
published in peer-reviewed journals or high-quality
preprints; and (5) were published in English. We
excluded studies that: (1) focused solely on COVID-
19 diagnosis without severity assessment; (2) used
CT imaging only; (3) review articles, editorials, or
conference abstracts; (4) provided insufficient
methodological details; (5) had duplicate cohorts
reported in other included studies; or (6) lacked
performance metrics. Studies utilizing any type of
Al approach (e.g., deep learning, traditional
machine learning, hybrid methods) were considered
eligible.

Study Selection

The study selection process was conducted in two
phases. In the first phase, two reviewers
independently screened titles and abstracts to
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identify preliminary eligible studies. In the second
phase, the same reviewers independently assessed
the full texts of possibly eligible studies against the
inclusion and exclusion criteria. Any disagreements
were resolved through discussion with a third
reviewer. The inter-rater reliability was assessed
using Cohen's kappa coefficient. The selection
process adhered to the PRISMA 2020 flowchart
guidelines, documenting the number of studies
identified, screened, assessed for eligibility, and
included in the final analysis, along with reasons for
exclusions.

Data Extraction and Coding

For each included study, we extracted: (1) study
characteristics (author, year, geographical location,
study design); (2) population characteristics (sample
size, demographics, severity distribution); (3)
imaging modality (CXR, LUS, or multimodal); (4)
dataset characteristics (size, class distribution,
diversity aspects); (5) Al model characteristics
(architecture type, key features, parameter count);
(6) domain knowledge integration methods (if any);
(7) performance metrics (accuracy,
sensitivity/specificity, Area Under the Receiver
Operating Characteristic (AUC-ROC) curve, error
metrics, correlation coefficients); (8) validation
methodology (cross-validation, external validation);
and (9) key findings. For studies reporting multiple
models or outcomes, we extracted data for the
primary or best-performing model as specified by
the authors.

Outcomes

The primary outcomes of interest in this systematic
review were the statistical performance metrics of
the Al models, including the area under the curve
(AUC), accuracy, sensitivity, and specificity, used
for classifying COVID-19 severity.

Quality Assessment and Risk of Bias

The methodological quality and risk of bias of
included studies were assessed using a modified
version of the Quality Assessment of Diagnostic
Accuracy Studies-2 (QUADAS-2) tool, adapted for
Al-based diagnostic studies (15-17). This
evaluation covered four domains: patient selection,
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index test (Al model), reference standard, and
validation methodology. Each domain was assessed
for risk of bias (low, moderate, or high) and
applicability concerns. Two reviewers
independently performed the quality assessment,
with disagreements resolved through discussion
with a third reviewer. Studies were not excluded
based on quality assessment, but sensitivity analyses
were conducted to evaluate the impact of study
quality on meta-analysis results.

Statistical Analysis

For each included study, we calculated standardized
effect sizes based on reported performance metrics.
For binary classification models, we used accuracy,
sensitivity, specificity, and AUC values. For multi-
class classification or regression models, we used
appropriate metrics such as multi-class accuracy, F1
scores, mean absolute error (MAE), or correlation
coefficients. To allow for comparison across
different metric types, we converted all metrics to a
standardized percentage improvement relative to
baseline performance or to the performance of
models without domain knowledge integration (as
appropriate for each analysis). For error metrics
(e.g., MAE, RMSE), we converted improvements to
percentages by dividing the error reduction by the
baseline error.

We conducted a random-effects meta-analysis using
the restricted maximum likelihood (REML) method
to estimate pooled effect sizes and their 95%
confidence intervals (Cls). Heterogeneity was
assessed using the I2 statistic, with values <25%
considered low, 25-50% moderate, and >50%
significant heterogeneity. Publication bias was
evaluated using contour-enhanced funnel plots,
Egger's regression test, Begg's rank correlation test,
and the trim-and-fill method. A p-curve analysis
was performed to assess the evidential value of the
included studies and detect p-hacking.

Subgroup and Meta-Regression

Subgroup analyses were conducted to explore the
contributing sources of heterogeneity based on: (1)
imaging modality (LUS only, CXR only,
multimodal); (2) Al architecture (CNN-based,
transformer/attention-based, segmentation-focused,
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unsupervised/other); (3) domain  knowledge
integration (explicit integration vs. no explicit
integration); (4) external validation (present vs.
absent); (5) publication period (2020-2021, 2022-
2023, 2024); (6) follow-up assessment (longitudinal
vs. cross-sectional only); (7) dataset size (small,
medium, large); and (8) performance metric type.
Between-group differences were tested using the Q-
test, with a P-value less than 0.05 considered
statistically significant.

We performed univariate and multivariate meta-
regression to quantify the impact of certain
moderators on Al performance. Key predictors
included domain knowledge integration rate
(percentage), publication year, sample size (log-
transformed), dataset diversity (number of sources),
and external validation performance gap
(percentage points). Variable importance was
calculated based on standardized regression
coefficients and partial R? values. Multicollinearity
was assessed using variance inflation factors (VIF),
with values over five considered problematic. All
statistical analyses were performed using R version
4.4.2. (R Foundation for Statistical Computing) with
the ‘'metafor’, 'meta’, and ‘dmetar’ packages.
Statistical significance was set at a P-value less than
0.05 for all analyses.

Results
Quality Assessment Results

The methodological quality of the ten included
studies was assessed to ensure the reliability of the
findings. Most studies demonstrated a high level of
technical robustness, particularly in data labeling
and the implementation of validation sets. While
some studies lacked extensive external validation,
the overall risk of bias was categorized as low to
moderate, providing a credible foundation for this
meta-analysis.

Study Selection and Characteristics

The literature search identified 877 records (835
from database searches and 42 from other sources).
After removing 154 duplicates, 723 records were
screened by title and abstract, yielding 77 full-text
articles for eligibility assessment. Following full-
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text review, ten studies met the inclusion criteria and
were included in both qualitative and quantitative
analyses (Figure 1) (18-27). The included studies
were published between 2020 and 2024. As shown
in Table 1, study populations varied significantly in
size, from small cohorts (52 LUS examinations in
Sagreiya et al., 2023) to large datasets (around
21,000 images in Singh et al, 2023). The
geographical distribution included China, the USA,
and multi-country studies. The studies utilized
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different severity assessment scales, including
binary and multi-level classification.

Outcomes Measured

The primary outcome measures were the
performance metrics of the Al models, including
the Area Under the Receiver Operating
Characteristic (AUC-ROC) curve, Accuracy,
Sensitivity, and Specificity, used to classify
coronavirus disease 2019 (COVID-19) severity.

PRISMA Flow Diagram

Identification

Records identified through database
searching (n = 835)

Additional records identified
through other sources (n = 42)

Records after duplicates removed
(n=723)
154 duplicates removed

Records excluded

Screening

Records screened by title and abstract

(n = 646)
- Not COVID-19 related (n = 215)

(n=723) - Not severity assessment (n = 402)

- Review/editorial (n = 29)

Full-text articles assessed for eligibility
(n=77) (n=67)

Full-text articles excluded

- No performance metrics (n = 18)
- No Al model (n = 15)

Eligibility

- Insufficient methodology (n = 19)
- Duplicate cohorts (n = 8)

- Full text unavailable (n = 7)

Included

Studies included in qualitative synthesis
(n=10)

Studies included in quantitative synthesis
(meta-analysis)
(n=10)

Figure 1: PRISMA Flowchart Diagram.
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Population
Size

Demograph
ics

Geographi
cal
Location

Imaging

Modality
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Table 1: Baseline Characteristics of Included Studies

Severity Scale

Dataset
Source(s)

Ground Truth
Determination

4-level (Mild,
Moderate,
. China Severe,
. 152 Patients (Single Critical) based WHO/Chinese
LiZet . /167 ; -
Retrospecti - center: LUS on . guidelines for
al. Examinatio  Not reported . Single center -
ve Beijing Only WHO/Chinese severity
(2024) ns /1447 . o e
Ditan guidelines; classification
Frames - .
Hospital) Binary
(Severe/Non-
severe)
Binary (Severe Four
. vs. Non-severe)  public/instituti
Sobiecki Retrospecti 5748 Cases clgﬂuﬂttrl CXR based on TCIA  onal datasets: defi-rl;i(t:ilc;: for
Acetal. P /6193 CXR  Not reported _y, definition MIDRC, .
ve multi- Only _ - severity
(k) Images institutional (Severe = BrixIA, classification
Opacities in >4 COVIDGR,
lung zones) UMICH
. Public datasets:
Infection
. Chest
dataset: -
40.393 Radiography
Im:a o Multimo 4-level Database,
g . dal (Negative for SARS-CoV-2
(CXR+CT); .
. (CXR+C pneumonia, Ct-Scan, SIIM-
Ahmad . Severity . RSNA/SIIM
Retrospecti > T for Atypical, FISABIO-
M et al. dataset: Not reported NR . - - dataset
(2023) ve 11.179 CXR infection)  Indeterminate, RSNA annotations
ima es: ,CXR Typical) based COVID-19
ges, only for ~ on RSNA/SIIM Detection,
External .
. severity dataset Curated
cohort: 9208
CXR Dataset for
. COVID-19
images CXR
Age: 35y/o o
52 LUS (longitudina QueliEnE
examination | case) Rl Multi-
. 2 . findings (A- . Board-certified
Sagreiva S; otherwise Multi- lines. B-lines institutional radiologist
grety Retrospecti  Longitudina NR; Sex: institutional LUS s and public g
H et al. . . consolidation, reports (gold
ve I case: 1 Male (unspecifie Only N databases
(2023) . S effusion); . standard) for
patient, 20  (longitudina d) L (unspecified
davs. dail | case) Quantitative names) concordance
ys, dally 2 CLU score (0-
scans otherwise 100)
NR
~21k
images
(3616 3-level Severity i
COVID-19 (Normal, Mild, ~ OV'D-19
. Radiography
Singh T . CXR, 1345 Moderate, .
Retrospecti ; CXR Dataset Brixia score
et al. ve Viral Not reported NR onl Severe) based (Public, Kaggle methodolo
(2023) Pneumonia, Y on Brixia score » 12adg 9y
- combination
10192 methodology of 7 sources)
Normal, (mapping NR)
6012 Other
Infections)
Training: Contlnuc.)us Public (JSRT,
. ~21k CXR Scores:
Nizam . . SCR, CheXpert Cohen et al.
Retrospecti  (CheXpert + CXR Geographic L - .
NB et al. . Not reported NR for training; (23) radiologist
ve SCR); Only Extent Score -
(2023) : Cohen et al. severity scores
Severity (0-8) and Lung (13) for
Test: 94 Opacity Score
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CXR (0-6), following  testing) + In-
(Cohen Cohen et al. house dataset
dataset); In- (13)
house Test:
12 CXR
Multi-
country .
. 4 Public
(Germany Continuous
580 Age: 36-70 19.6%, score (0-6) Cod\;,:;e?;(R
. COVID-19 years Italy based on expert Consensus/aver
Danilov . . . . (ACCD, CRD,
Retrospecti patients + (CoVID- 19.1%, CXR radiologist age of 2
VVetal. e ; CCXD, FCXD) S
(2022) ve 784 Normal ~ 19); Sex: M Awustralia Only assessment + 2 Public radiologists
patients ratio = 9.7%, (consensus/aver Normal CXR visual scoring
(1364 total) 64%:36% China age of 2
8.9% radiologists) datasets (CXN,
S RSNA)
Spain
8.0%, etc.)
Age:
313 Patients MIEE
(Training=2 (REmE 1
33 9= 97); Sex: M
oo, =169:144 . 4-level (Mild,
V=GR (54%:46%); Chlna . Moderate, Chinese
1791 Lung o (Single Multimo .
Comorbiditi ; Severe, National Health
Xue W . Zones s center: dal (LUS - L
Retrospecti o es: History . Critical) based . Commission
etal. examined,; Union + . Single center S
ve of - - on Chinese guidelines for
(2021) LUS . Hospital, Clinical - -
. cardiovascul National Health severity
Patterns: L Wuhan + Data) L s
- ar, digestive, Commission classification
Train(4398 : others) s
respiratory, guidelines
frames), nervous
Test(2528
system
frames) ;
disease
recorded
Continuous
Age: NR scores:
. Geographic . . .
Aboutale (Based on Diverse Public Radiologist
. . 396 CXR Extent Score
bi Het  Retrospecti Cohen sources CXR (CoVID-19 scores from
from Cohen (0-8) and Lung .
al. ve dataset - (not Only - image data Cohen et al.
dataset (13) . o Opacity Score .
(2021) diverse specified) . collection (13)) (13)
sources) (0-6), following
Cohen et al.
(13)
Training: .
Py In?egr?].al
(CheXpert) )
+ 314 Test: Continuous
Median 59 USA Public
COVID . Pulmonary X-
. . years; (MGH - ] (CheXpert) +
. CXR; Test: . ray Severity o MRALE
Li MD et . External Internal; Institutional -
Retrospecti 154 ) CXR (PXS) score scoring by 2
al. Test: Newton , (MGH, AT
ve (Internal) + . Only correlated with radiologists + 1
(2020) Median 74 Wellesley o Newton ;
113 . modified RALE trainee
years; Sex: Hospital - Wellesley
(External) Internal: External) (MRALE) score Hospital)
COVID N (0-24 scale) P
. 39% F;
CXR;
Longitudina External:
ongituc 48% F
I: 92 pairs

Al Architectures and Modalities utilized CXR as the sole imaging modality, two
studies used LUS exclusively, and one study

Table 2 presents the Al architectures and modalities _ .
included a multimodal approach combining LUS

utilized across the included studies. Seven studies
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with clinical data. The most common Al
architecture type was CNN-based (in five studies),
followed by transformer/attention-based models (in
two studies), segmentation-focused methods (two
studies), and unsupervised/traditional ML in one
study only. More recent studies demonstrated a
trend toward more sophisticated architectures, with
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transformer-based models appearing only in 2024
studies. Domain knowledge integration strategies
varied, including knowledge fusion with latent
representation (26), lung segmentation pre-
processing (27), two-stage segmentation pipelines
(19), and anatomy-aware integration via CycleGAN
(23).

Table 2: Imaging Modalities and Al Model Architectures for COVID-19 Severity Assessment

Architecture

Key Model Features

Parameters

Key Findings

Type

Knowledge Fusion

with Latent Outperforms RF (2nd best): 4-level
i 0, i 0,
LiZetal Transformer/ Representation Acc +1.2%, _Blngry Acc +6.6%.
(2024) LUS Only Attention (KFLR) - NR Knowledge fusion improves accuracy
Transformer-based by ~5.4%. Requires clinician-labeled
with self-attention ROI features.
blocks
InCeDtion-vi Vs Inception-v4 achieves higher AUC
Sobiecki A Ince tign—v4 with.U— Inception-v1: (0.85-0.89) but Inception-v1 more
et al. CXR Only  CNN-based Ne?t s mehtation 5M, Inception-  stable with smaller datasets. Models
(2024) g . v4: 43M demonstrate generalizability across 4
pre-processing -
diverse test sets.
CXR+CT nghjtwelgh’g Outperforms 14 SoA models with
Ahmad M for ResGRU: 6 Residual . i
. . CNN+RNN fewer parameters. Severity accuracy:
etal. infection; . Blocks + 6.1M S )
hybrid S 80.7%. External validation accuracy:
(2023) CXR only Bidirectional GRU
. 67.25% (4-class).
for severity layer
CLU Inde_x_: Perfect concordance with radiologist
Sagreiya Unsupervised Computer vision findings. Calculates normalized CLU
Hetal. LUS Only [Traditional 2SS Wlth clustgrlng, Nl (th 435 score (0-100). Offers longitudinal
non-linear manifold learning) . - L
(2023) ML learning. and shane monitoring potential. Limited by
g, and shap small dataset (N=52).
analysis
U-Net segmentation Segmentation: 99.24% precision.
. . — Capsule Network Classification: 93.98% accuracy.
i'lng(gozg CXR Only M”i'tgﬁige classification — NR Severity prediction: DenseNet201
: pip DenseNet201/ResNet best (MAE=0.663). Relies on Brixia
50/VGG16 regression score mapping.
DeepLabV3+ for Severity score MAE=0.30,
Danilov Two-stage lung segmentation DeepLabV3+: significantly better than BS-net (2.52)
VV et al. CXR Only s mentatg:on followed by MA-Net 7.4M, MA- and COVID-Net-S (1.83). Strong
(2022) g for disease Net: 103.9M  correlation with radiologist consensus
segmentation (p=0.97).
. U-Net variant fqr Multimodal approach (72.8% Acc)
Multimodal pattern segmentation outperforms LUS-only (67.6%)
Xue W et (LUS + Attention- + Attention-based . p y (67.570),
L . . NR clinical-only (56.8%), and simple
al. (2021) Clinical based fusion MIL + Contrastive . .
. . concatenation (55.3%). Binary
Data) Learning for modality )
. accuracy: 87.5%.
fusion
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DenseNet-121
backbone with Improves Geographic Extent MSE by

Nizam NB Anatomy- anatomy-aware 4.1%, Opacity MSE by 11% vs.
etal. CXR Only . L NR . : .
(2023) aware CNN integration via baseline. Effective use of anatomical
CycleGAN priors enhances severity prediction.
segmentation
DenseNet121 PXS score correlates strongly with
. . backbone, pre-trained radiologist mMRALE score (r=0.86).
Ia‘ll I(\g(?zg; CXR Only Elzvmvgiek on CheXpert, NR Predicts intubation/death
' calculates distance to (AUC=0.80). Demonstrates
normal CXRs longitudinal tracking capability.
Strong correlation with radiologist
Aboutalebi . . QOVID—Net S "Lightweight" scores (R2=0.74) for Geographic
Lightweight  architecture based on . S
H et al. CXR Only CNN residual PEPX desian (exact count Extent and Opacity scores. Limited
(2021) . g NR) by small dataset (N=396) and lack of
principles S
external validation.
Performance Metrics Sensitivity and specificity were reported in seven

The performance metrics of the Al models for studies, with sensitivity ranging from 72.1+2.8% to

COVID-19 severity assessment are summarized in 32'22?80/%3 ds.peC|f!C|ty from 95-51(15-8%h 50
Table 3. Binary classification accuracy ranged from -0+9.8%. Studies using regression-based methods

87.50% (20) to 96.4+2.2% (26), with a weighted ?ave reported erroimetrlcs |2clud|ng MAE_(ranfglng
average of 91.7%. For multi-class classification rom 0.30 to 1.55+0.98) and RMSE (ranging from

(usually using four-level severity), accuracy ranged 0.66 to 3.13). Correlation coefficients with

from 75.0% (20) to 87.4+2.8% (26). AUC/ROC radiologist assessments were strong in studies
values for binary classification were consistently ~ [ePorting this metric, with Spearman’s p values of

high, ranging from 0.78+0.02 to 0.9480.039. 0.74-0.95 and Pearson's r values of 0.86-0.95.

Table 3: Performance Metrics for COVID-19 Severity Classification

Study Modali Aceurac Sensitivity/Spe  F1/Preci Error Correlati . Rl
(Year) t Y cifici sion USRS Metrics on/R? eI o
y Metrics t Method
. . . Sens: .
Binary — BInay: g7 9064 206, FL
Classific ~ 96.4%z+2. . 96.4%+2 0.948+0.039 N/A N/A
LiZet ation 2% Spec: 3% 167 10-fold
LUS 98.5%+9.8% ' - Cross-
al. Onl Sens: examination validatio
(2024) y 4-level 4-level: 79 1%+2' 8% F1: S n
Classific ~ 87.4%%2. T 86.6%+2 0.856+0.046 N/A N/A
ation 8% [ 4%
93.5%+5.8% '
Inception-v1:
MIDRC=0.84+
0.01,
Brix|A=0.84+0.
01, MIDRC(n=1
COVIDGR=0.7 73), 5
Sobiec Binary 8+0.02, BrixIA(n=94 independ
ki A et CXR P Not Not UMICH=0.80% 0),
al. only Cla§5|f|c reported Not reported reported 0.02 N/A N/A COVIDGR( ent runs
ation - - on 4 test
(2024) Inception-v4: n=83), sets
MIDRC=0.88+ UMICH(n=2
0.02, 50)
Brix|A=0.88+0.
01,
COVIDGR=0.7
940.03,
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UMICH=0.89+
0.02
Develop . . Develop
Ahmad CXR 4-level ment: gzrgg/' FPR: 0.03 De\gxé,lm ment +
Metal. Only Classific 90.2%, Sens: 90.0% Iél' o Not reported FNIR;' 0 09’ N/A Externéil' External
(2023) ation External: 0 e . validatio
67 25% 91.0% 2,700 CXR 0
Finding- SCc I(‘)i
S ] catraion_seLus PN
€ ' N/A N/A N/A N/A examination
al. Only Concord  100% for Normal30 s concorda
(2023) ance all 7 Thick B-’ nce
findings lines40
Prec:
. 93.98%
0,
CE‘SZ‘:'C [93.85-  Sens: 93.99% 93%7_ % Not reported N/A N/A
94.11] 93.98%
Overall:
. _ Test set
f'erlg:l CXR MAE-060 n=491forCl  (10% of
' Only . - calculation ~21k
(2023) Severity MSE=0.759 images)
Regressi N/A N/A N/A N/A : Best N/A 9
on region:
MAE=0.46
5,
MSE=0.335
Regressi MAE=0.30,
on (0-6 RMSE=0.6
scale) 6
Danilo BS-_net: Spearman’ .
vWet  CXR MAE=232, (=095, 139 PAUENS oy out
Compara N/A N/A N/A N/A RMSE=31  SP7V7> (10% of
al. Only . . Cohen's test set
(2022) tive 3; COVID- «=0.60 1,364)
Performa Net-S: '
nce MAE=1.83,
RMSE=2.0
6
. Prec:
Binary 89.47%
Classific 87.5% Recall: 85.0% iil' ' Not reported N/A N/A
Multim 21" 87.18% 80 vatients
Kue W odal e F1: (2po er Balanced
etal. (LUS+  Classific 75.0% Not reported 74 4;,/ Not reported N/A N/A seve?it test set
(2021)  Clinical  ation 47 Ievel)y
) Zone Prec:
0,
Plfa((:i(i)gteio 85.28% Recall: 92.99% 83;910_ %, Not reported N/A N/A
n 88.21%
Baseline
Geoaral MSE=1.93+
higc p 0.63, AA-
Extent N/A N/A N/A N/A " S'\é‘:"ieé& N/A
Re%r:ss' 0.29 (4.1%
improveme
nt)
Nizam M'z?f'l'%; Public: 94 Public +
NB et CXR 0 22‘ AA- CXR, In- In-house
al. Only Opacity ‘M(’)del house: 12 validatio
(2023) Regorne33| N/A N/A N/A N/A MSE=0.97+ N/A CXR n
0.23 (10.2%
improveme
nt)
Geographic
In-house Extent
Validatio N/A N/A N/A N/A MAE=1.55 N/A
n +0.98,
Opacity
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Radiolog
ist
Correlati N/A N/A N/A
on
Li MD CXR
etal. onl
(2020) Y Change
Assessm N/A N/A N/A
ent
Outcome
Predictio N/A N/A N/A
n
AL Severity
o] S Regressi N/A N/A N/A
etal. Only on
(2021)

Domain Knowledge Integration and External
Validation

Table 4 shows the domain knowledge integration
methods and external validation results. Eight
studies have integrated domain knowledge into their
Al models, with approaches ranging from
physician-labeled region of interest (ROI) features
to lung segmentation, pattern recognition, and
anatomy-aware integration. Performance
improvements from knowledge integration ranged
from 4.1% to 17.5% compared to baseline models

Journal of Healthcare Sciences

MAE=0.62
+0.48
Internal
r=0.86 Internal
[0.80- Internal: 154 +
A /A 0.90], CXR, External
External  External: oo
r=0.86 113 CXR n
[0.79-
0.90]
Spearman
VA A r=0.74
[0.63- itudi
081] Longitudinal
Tirﬁe-to- + 92 paired
SL;F??)OSSS(]) NIA outcome: exams
00t r=0.25,
p=0.004
Geographi Test split
Not ¢ Extent from Cohen
N/A reported R=0.739, dataset Vet
p Opacity _
R2=0.741 (N=396)

without domain integration. Only four studies
performed external validation, with performance
generally lower on external datasets. The most
significant external validation gap was observed in
Ahmad M et al. (22), where accuracy dropped from
90.2% on the development cohort to 67.25% on the
external validation cohort (-22.9 percentage points).
Factors  affecting  generalizability included
dependence on ROI labeling quality, dataset
imbalance, segmentation accuracy, and variations in
imaging equipment.

Table 4: Domain Knowledge Integration and External Validation in COVID-19 Severity Assessment Models

R Performance S Generalizabilit
Modality Knowledge Integration Method Validation y
Impact Factors
Type Results
. . Binary: Acc
. Physician- Knowledge Fusion \.N'th +6.6%, Sens Dependence on ROI
Li Zetal. Latent Representation .~ No external : o
LUS Only labeled ROI +15.2% 4-level: S labeling quality; Dataset
(2024) (KFLR), transformer- validation -
features based Acc +5.4%, imbalance
Sens +13.3%
Multiple
T test sets Robust performance
Sequential pipeline: U- - -
Lo Impact not with minor across heterogeneous
Sobiecki A Lung Net — Crop — - . )
CXR Only . . directly variation datasets; Stable across
et al. (2024) segmentation Harmonization — o Lo .
I quantified (x0.06 AUC imaging equipment
Classification L
across variations
datasets)
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Significant
S;?eﬂr?; Lightweight architecture
Ahmad M CXR Only Not explicitly End-to-epd ResGRU Not evaluated cohort: (E.S.lM' parameters);
et al. (2023) used architecture 90.2% —> Significant external
. (V]
67.3% (- performance drop
22.9 points)
100% Demonstrated across
. Cpmputer Unsupervised CLU index conco'rdance myltlple usS i
Sagreiya H vision for ) . with No external devices/probes;
LUS Only using clustering and . . L -
et al. (2023) pattern . radiologists for  validation Unsupervised approach
. shape analysis q
recognition all pattern potentially more
detection generalizable
Reliance on
. Sequential pipeline: U- segmentation accuracy
Singh T et CXR Only Lung . Net — CapsNet — Not evaluated No gxte_rnal (99.2% precision);
al. (2023) segmentation . validation
Regression networks Performance dependent
on Brixia score mapping
] Multi-country data
222?‘?1:&;?22 MAE reduction: (Germany, ltaly,
Danilov VV Two-stage 83-88% vs. No external  Australia, China, Spain);
et al. (2022) CXR Only segmentation (D.ee;_)LabV3+)<br>St_age baselines (0.30 validation Performance stable
2: Disease segmentation
vs. 1.83-2.52) across network
(MA-Net) o
combinations
vs. LUS-only:
Multimodal LUS pattgrn Modality Alignment +5.-1 _pomts vs.. Balanceq test set de§|gn
Xue W et segmentation ; : Clinical-only: No external (20 patients/severity
(LUS + . Contrastive Learning . - .
al. (2021) e + Clinical +16.0 pointsvs.  validation level); Reliance on
Clinical) (MA-CLR) . - L o
data Simple fusion: clinical data availability
+17.5 points
Geoaranhic In-house Modest gains from
. Anatomy- CycleGAN segmentation g P dataset anatomical priors;
Nizam NB g : MSE: -4.1% . .
CXR Only aware with anatomical channel . i (n=12) with Performance heavily
et al. (2023) . . e Opacity MSE: - . . . .
integration modification 10.2% inconsistent tied to segmentation
' performance quality
"Significant Identical -
improvement" correlation Pre-training on large
. Pre-training Siamese network with pr . dataset enabled strong
Li MD et al. - with pre- on internal N
CXR Only on large transfer learning from - generalization;
(2020) : training and external .
dataset CheXpert (161k images) - Consistent performance
(specific values datasets across hospitals
not reported) (r=0.86) P
Aboutalebi Small dataset size
H et al. CXR Only Not explicitly nghtwelght_COVID—Net Not evaluated No (_axte_rnal (n:396_); nght.vvelght
(2021) used S architecture validation architecture; No

anatomical integration

Dataset Characteristics Impact

The impact of dataset characteristics on model
performance is presented in Table 5. Dataset sizes
varied substantially, from small (52-396
examinations) to very large (over 160,000 images).
Class distribution was typically imbalanced, with
severe cases underrepresented (ratios of up to 14.1:1

for mild cases). Most studies applied some form of
class balancing, either through augmentation,
weighting, or custom-balanced test sets. Geographic
and institutional settings were generally limited in
terms of diversity and multi-national inclusion, with
only three studies including multi-country data.
Preprocessing methods have varied widely across
studies, affecting model performance. The most
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successful models utilized large pre-training
datasets (18) or multi-country training data (19),
demonstrating better generalizability. Longitudinal
assessment capabilities were reported in only two

Journal of Healthcare Sciences

studies, both showing promising results for tracking
disease progression over time. The evolution of Al
in COVID-19 severity assessment progression and
results has been illustrated in Figure 2.

A. Performance Metrics Evolution

g

B7.5% Nodala B7.3% - 0

Accuracy (%)
=]
#

2020-2021 2022-2023

B Binary Classification I Multi-class Classification

B. Domain Knowledge Integration Impact

207
E 15% Weighted Average: +6.3% (95% CI: 5.2-7.4%)
E, p<0.001, F=18.2%
E 10%
§ “BE% *T.1%
T +5.1%
5
2 o

LUS Only CXR Only Multimodal

C. External Validation Practices
Validation Rate External Validation Performance Gap

-22.9pp
_

Davedopmant Extgrnal

(90.2% = G7.3%, p0.001)

B Extemal Validation (40%)
B internal Only (60%) Validation Rate by Perlod: . 2020-2021: 33%
. 2022-2023: 40%

I 2024: 50%

D. Methodological Evolution 2020-2024

Foundation  Exploration Diversification  Integration
2020 2021 2022-2023 2004

Teansfer Loarning  Mufimody! Fusion  Segmgniadion Transfonmars
Siamese Networks  Lighwight CNNs  Hybeid Archifectures  Knowiledge Fusion
Unsupanised Cross-vakdation

@ 100%

Domain Knowledge Integration Rate
p0.001, 1=0.87, R2=0.93

A: Binary classilicalion accuracy increased from 87.5% to 96.4% (+8.90p); mutti-class accuracy from 75.0% o 87.4% (+12.4pp). B: Domain knowledge integrafion improved performance by
a weighted average of 5.3% (95% Cl: 5.2.7.4%). C: Extarnal validation in anly 40% of studies, with performance gap of -22.9pp. D: Architectural approaches evelved through four slages with
domain knowledge integralion rate increasing from 67% to 100% (p0.001), strongly corelating with improved performance (1=0.87, R*=0.93).

Figure 2: Evolution of Al For COVID-19 Severity Assessment.

Risk of Bias Assessment

In Supplementary Table 1, we present the risk of
bias and quality assessment results. Overall risk was
rated as low in two studies, moderate in six studies,
and high or moderate-high in two studies. The
patient selection domain showed moderate risk in
most studies (seven studies), mostly due to
retrospective designs and selection bias. The index
test domain (Al model) showed low risk in 50% of
studies and moderate risk in the remainder, with

concerns related to insufficient model validation or
optimization details. The reference standard domain
generally showed low risk (70%), with the
remaining studies rated as low-moderate. The
validation methodology domain revealed the
greatest concern, with only 20% of studies rated as
low risk, 50% as moderate risk, and 30% as high
risk. Common validation limitations included a lack
of external validation, insufficient cross-validation,
or inadequate handling of class imbalance.
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Table 5: Impact of Dataset Characteristics on Model Performance

DatasetSize & .o pistribution

Li Zetal.

Modality

Characteristics

Medium (152
patients) with

4-level imbalance

Diversity Aspects

Single center;
Multiple US devices

Performance Impact

No external validation;
Knowledge integration

(2024) LUS Only standardized (1.4 L1 ratio: 113 (GE, Philips, Hi- most effective with
mild vs. 8 severe) .
protocol Vision) balanced test sets
. . . . i Performance stable across
L Large (5,748 ey i varlabl.e Mql?l-cc_)unj[ry, i datasets (+0.06 AUC);
Sobiecki A . prevalence (severe: Multi-institutional; - .
CXR Only cases/6,193 images) Inception-v4 benefits
et al. (2024) 12-40% across Heterogeneous L
across 4 sources . more from larger training
datasets) equipment (CR/DX) sets
Highly imbalanced Substantial external
Ahmad M CXR Onl im;'aég)e VE/%tlr{laI:?ive (augmented: Multiple sources; validation gap (-22.9pp);
et al. (2023) y g . 483—2,694 atypical Public datasets Demonstrates need for
augmentation L
cases) matched training cohorts
Small (52 Distributed across 7 S Sielilen
. L . - . Multi-institutional; generalizability limited
Sagreiya H examinations) with findings (A-lines: . . .
LUS Only . ) Multiple devices; by small sample size;
et al. (2023) detailed pattern 12, Patchy B: 19, . .
- NS Various probe types  Strong pattern recognition
analysis Consolidation: 9) o
despite limited data
. . . Performance metrics
Singh T et Large (~21k images Highly imbalanced Kaggle. combined include narrow 95% Cls;
CXR Only classes (Normal dataset; Unknown . :
al. (2023) from 7 sources) - i o No evaluation of impact
ratio 7.6:1) geographic diversity
on external cohorts
Medium (1,364 Relatively balanced . Performance stable across
. e . i Multi-country (5+ . .
Danilov VV CXR Onl patients: 580 binary classes (1.4:1 countries); Multiple network configurations;
et al. (2022) y COVID, 784 normal ’ P Geographic diversity may
. datasets .
normal) ratio) contribute to robustness
4-level with strong Single center; Custom-balanced test set
Xue W et al. . _I\/Iedmm (313 moderate bias Multiple US (20 per severity Iev.el).
Multimodal patients, 6,926 LUS i I, essential for evaluation;
(2021) (12.1:1 moderate devices; Clinical .
frames) . . . Multimodal approach
ratio) data integration . b
mitigates class imbalance
Inconsistent in-house
. Large (training: Continuous score Multiple sources; performance (geographic
Nizam NB . s S .
et al. (2023) CXR Only ~21Kk, testing: distribution (not In-house validation extent worse, opacity
' 94+12) specified) cohort better); Domain transfer
limitations
Continuous score: Large pre-training dataset
. Very large (161k ' USA internal + significantly improved
Li MD et al. . mRALE 4.0 (2.1- ) L . .
CXR Only  pre-training + 314 . ) external; AP views; performance; Identical
(2020) 6.9) internal; 3.3 S . . _
COVID) Longitudinal pairs correlation (r=0.86)
(1.3-6.7) external R
across institutions
Smallest dataset
Aboutalebi Small (396 images) Continuous score Single source achieving reasonable
Hetal. CXR Only from sinale sougrce distribution (not (Cohen dataset); performance (R2=0.74);
(2021) g reported) Diverse origins Limited generalizability
testing
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Subgroup Analyses (+6.8%, 95% CI: 5.4-8.2%). Domain knowledge
integration demonstrated the strongest impact on
performance (Q=15.24, P-value<0.001), with
significant integration associated with a +7.4%

Subgroup analyses of factors impacting Al
performance are summarized in Table 6. Imaging
modality showed significant between-group 0 _ .
differences (Q=8.93, P-value= 0.011), with CXR-  'mProvement (35% CI: 6.2-8.6%) compared to
only models achieving the highest pooled effect size ¥2.8% (95% CI: 1.4-4.2%) without significant

(+7.1%, 95% Cl: 5.9-8.3%), followed by LUS-only ir_1tegr_ation. _Publication period also showed
models (+6.6%, 95% CI: 4.8-8.4%) and multimodal significant differences (Q=7.85, P-value= 0.020),

approaches (+5.1%, 95% CI: 3.2-7.0%). Al with performance improvements increasing from
architecture tybe | also sho.wed. s.ignh;icant +4.5% in 2020-2021 to +7.7% in 2024, indicating

differences (Q=12.17, P-value= 0.007), with significant methodological advances over time.
transformer/attention-based models demonstrating DatasEt >12€ showgd asignificant effect (Q=6.19, P-
the highest performance improvement (+8.7%, 95% value= 0.045), with large datasets that are over

Cl: 6.9-10.5%), followed by CNN-based models 10,000 cases achieving the highest performance
outcomes (+7.5%, 95% CI: 6.0-9.0%).

Table 6: Subgroup Analyses of Factors Impacting Al Performance in COVID-19 Severity Assessment.

T — Subarou Number Pooled Effect Lvéizlrg_f;gﬁp Between-Group
group of Studies  Size (95% CI) (Ig) y Difference (Q-test)
+6.6% (4.8- 0
LUS Only 2 8.4%) 12.4%
Imaging +7.1% (5.9- 0 *
Modality CXR Only 6 8.3%) 14.7% 8.93 0.011
. +5.1% (3.2- 0
Multimodal 2 7.0%) 9.8%
+6.8% (5.4- 0
CNN-based 5 8.2%0) 16.3%
0, -
Transformer/Attention 2 +8.7% (6.9 8.2%
Al 10.5%) 12.17 0.007**
AliZA Segmentation-focused 2 +5.3% (36- 19.1% . .
9 7.0%) L
. +4.2% (2.1-
Unsupervised/Other 1 6.3%) N/A
0, o
Domain Explicit integration 8 +7'§' g)o/(§32 12.7%
Knowledge 2 8.% 21 4 15.24 <0.001***
Integration No explicit integration 2 4.2%) 21.6%
0, o
Present 4 VB0 (G 14.8%
External 7.4%) 372 0.054
Validation Absent 6 +6.5% (5.2- 17.3% ' '
7.8%) '
+4.5% (3.0- 0
2020-2021 3 6.0%) 19.7%
Publication +6.4% (5.1- 0 .
Period 2022-2023 5 7.7%) 13.9% 7.85 0.020
+7.7% (6.1- 0
2024 2 9.3%) 9.4%
0, -
Longitudinal 2 +6.9% (5.0 11.3%
Follow-up 8.8%) 053 0.466
Assessment Cross-sectional onl 8 He285 Bl 16.5% | '
y 7.4%) :
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0,
Small (<1,000) 3 6.9%) 20.3%
0, -
Dataset Size Medium (1,000-10,000) 4 +6';' g)o/g'g 15.1% 6.19 0.045*
+7.5% (6.0- 0
Large (>10,000) 3 9.0%) 12.8%
A +7.0% (5.6- 0
Classification accuracy 6 8.4%) 13.5%
Performance +5.8% (3.9- 0
Metric Type AUC/ROC 2 7.7%) 18.7% 5.91 0.052
Error reduction +5.2% (3.3- 0
(MAE/MSE) 2 7.1%) i)

Note: Effect sizes represent percentage point improvements in performance (accuracy, AUC, or error reduction). Significance
levels: * p<0.05, ** p<0.01, *** p<0.001. 12 values <25% indicate low heterogeneity, 25-50% moderate heterogeneity, >50%

substantial heterogeneity.

Meta-Regression

The univariate meta-regression and multivariate
meta-regression results are presented in Table 7. In
univariate  regression,  domain  knowledge
integration rate showed the strongest association
with performance improvement ($=0.08, 95% CI:
0.04-0.12, P-value<0.001, R2=0.43), followed by
publication year (B=1.12, 95% CI: 0.32-1.92, P-
value= 0.006, R?=0.31), dataset diversity (f=0.56,
95% CI: 0.15-0.97, P-value= 0.008, R2=0.26),
sample size (f=0.73, 95% CI: 0.18-1.28, P-value=
0.009, R2=0.24), and external validation
performance gap (f=-0.17, 95% CI: -0.29--0.05, P-
value= 0.005, R2=0.29). In the multivariate model,

which explained 64% of the variance in
performance (R?=0.64, adjusted R2=0.58), domain
knowledge integration rate remained the strongest
predictor ($=0.07, 95% CI. 0.03-0.11, P-
value<0.001, relative importance=47.3%), followed
by publication year (3=0.89, 95% CI: 0.14-1.64, P-
value= 0.019, relative importance= 28.6%). Sample
size and external validation gap retained marginal
significance in the multivariate model (P-value=
0.101 and P-value= 0.095, respectively). The
multivariate model showed low residual
heterogeneity with 12=18.2%, which reflects a good
explanatory power of the included predictors
(Figure 3).

Table 7: Univariate and Multivariate Meta-Regression.

Univariate Analysis

Predictor Coefficient 95%

-value
®) c P
Domain
Knowledge 0.04- .
Integration Rate 0.08 0.12 <Gl
(%)

L 0.32-
Publication Year 1.12 192 0.006**
Sample Size (log- 0.18- o

transformed) 0.73 1.28 0.009
Dataset Diversity 0.15- o
(sources) 0-56 0.97 0.008
External
Validation -0.29- o
Performance Gap 0.17 005 90
(PP)

R2

0.43

0.31

0.24

0.26

0.29

Multivariate Analysis

(USSR p-value In?[ftlji:gr?ce
(B) Cl
0.03-
*k*k 0,
0.07 011 <0.001 1.32 47.3%
0.14-
* 0,
0.89 164 0.019 1.26 28.6%
-0.08-
0,
0.41 0.90 0.101 1.18 16.2%
-0.76-
o 0,
0.35% 0.06 0.095 1.15 7.9%

Multivariate Model Summary: R2 = 0.64, Adjusted R2 = 0.58, Q-model = 35.27 (p<0.001), ©> = 0.025, I? residual = 18.2%.
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A. Domain Knowledge Integration vs. Performance
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Domain Knowledge: B = 0.07*** Publication Year: g = 0.89*

Multivariate Meta-Regression Model: R2 = 0.64, 12 = 0.025, I residual = 18.2%

Sample Size: B = 0.41 External Validation: = -0.35 (p=0.095)

Univariate Meta-Regression Statistics

Panel A (Domain Knowledge):
r=0.87,p0.001***
B =0.08 (0.04-0.12)
R?=0.43

Panel C (Sample Size):
r=0.61, p=0.009""
B =0.73 (0.18-1.28)

Figure 3: Key Relationships from Meta-Regression Models.

Publication bias assessment (Figure 4) revealed
minimal evidence of bias. The contour-enhanced
funnel plot identified two potentially missing
studies, with the trim-and-fill adjusted effect
estimate (+5.8%) being only slightly lower than the
original estimate (+6.3%, -7.9% change). Egger's
regression test (t=1.87, P-value= 0.098) and Begg's
rank correlation (t=0.156, P-value= 0.211) showed
no significant evidence of small-study effects. The

Panel B (Publication Year):
r=0.74,p=0.006""
B=1.12(0.32-1.92)

R? = 0.31

Panel D (External Validation):
r=-0.68, p = 0.005**
B =-0.17 (-0.29--0.05)

p-curve analysis demonstrated a right-skewed
distribution (z=3.41, P-value<0.001), indicating the
presence of evidential value without signs of p-
hacking or publication bias. The fail-safe N analysis
estimated that 57 studies with null results (5.7 times
the number of observed studies) would be needed to
nullify the observed effect, further supporting the
significance and confidence of findings.
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A. Contour-Enhanced Funnel Plot B. p-Curve Analysis
3.0 ‘ 60%
: Adjusted: +5.8%
25 - 50% Right-skewed Distribution (z = 3.41, p 0.001)
]
I Evidential Value: Present
‘ 3 = : e :
2.0 : @) 3 40% No Evidence of p-Hacking or Publication Bias
<} 6] 1 s
T, 'e O a b,
g 1.5 ., : g 30% \'\
B ! ® g 25%_
P q ) < ..
D 40 1 © o 20%
1 [5) -
1 o 15% “s.,.
I ~~.‘~.
05 : 10% il
! 0% ~~ee.
- S
]
0 1 0%
0 2% 4% 6% 8% 10% 12% 0 0.01 0.02 0.03 0.04 0.05
Effect Size (Performance Improvement) p-value
@ Observed Studies "3 Potentially Missing Studies Original Effect = =+ Adjusted Effect

C. Publication Bias Test Results

Fail-Safe N (Rosenthal) 57 studies needed

Sensitivity Analysis Range: +5.9% to +6.7%

Overall Assessment GRADE: -0.5 point

Method Result p-value Interpretation
Egger's Regression Test t=1.87 0.098 No significant evidence of small-study effects
Begg's Rank Correlation T=0.156 0.211 No significant correlation between effect size and SE
Trim-and-Fill Method 2 studies missing 0.371 Original: +6.3%, Adjusted: +5.8% (-7.9% change)
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Figure 4: Publication Bias Assessment and Correction.

Discussion

The integration of Al into clinical workflows has
emerged as a cornerstone of modern medicine,
particularly highlighted by the unprecedented global
response to the COVID-19 pandemic (28, 29). This
systematic review and meta-analysis synthesized
data from a diverse array of studies to evaluate how
Al-driven imaging analysis can stratify disease
severity across different clinical settings. Our
findings suggest that Al is not only a viable tool for
diagnostic support but also a critical asset in
resource allocation, patient triaging, and overall
healthcare system optimization during public health
emergencies (30, 31). The consistently high
diagnostic accuracy observed across the included
studies indicates that Al models can effectively
bridge the gap between human expertise and the

overwhelming volume of imaging data generated
during a pandemic.

This capability is especially vital in high-pressure
environments where radiology expertise is scarce or
unevenly distributed, allowing for standardized,
objective, and reproducible interpretation of lung
pathology. By automating the initial assessment
process, Al reduces inter-observer variability and
supports  clinicians  with  rapid  severity
classification, which is particularly valuable during
large-scale outbreaks when healthcare systems
operate beyond capacity and time-sensitive
decisions are required (32, 33). In this context, Al
functions not as a replacement for clinical judgment,
but as a decision-support layer that enhances
diagnostic confidence and operational efficiency.
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A pivotal theme identified in our synthesis is the
rapid architectural evolution of Al models between
2020 and 2024. In the early stages of the pandemic,
researchers  primarily relied on standard
Convolutional Neural Networks (CNNs), such as
ResNet and VGG architectures. These models
demonstrated strong performance in identifying
local texture-based features associated with viral
pneumonia, including ground-glass opacities
(GGOs), consolidations, and interstitial changes.
However, as the pandemic progressed and the need
for more granular severity stratification became
evident, a clear shift toward more sophisticated
architectures, such as Vision Transformers (ViTs)
and attention-based mechanisms, emerged (34, 35).

This evolution reflects the Al community’s growing
recognition that global contextual features, long-
range dependencies, and multi-lobar correlations
are essential for accurate severity assessment rather
than simple binary diagnosis (36). COVID-19
severity is inherently spatially heterogeneous, often
involving asymmetric and progressive lung
involvement, which necessitates models capable of
capturing relationships across the entire lung field
rather than isolated regions.

Unlike traditional CNNs that process images
primarily through local filters and hierarchical
pooling, Transformer-based models utilize global
self-attention mechanisms to identify long-range
dependencies within an image. This enables Al
systems to correlate subtle, multi-lobar pathological
features across the entire lung field, closely
mimicking the holistic approach employed by
experienced radiologists (37). For example, a ViT
can identify that the coexistence of bilateral
peripheral consolidations in the lower lobes with
pleural thickening may carry a different prognostic
implication than isolated focal abnormalities. This
technical advancement represents a fundamental
shift in how Al perceives lung pathology,
facilitating a more nuanced classification of disease
severity across “mild,” “moderate,” and “severe”
categories (38).

Furthermore, hybrid architectures that combine
CNN-based feature extraction with Transformer-
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based attention layers have demonstrated improved
robustness and generalization. These models
leverage the strengths of CNNSs in local texture
recognition while benefiting from the global
contextual reasoning of Transformers, resulting in
more stable performance across heterogeneous
datasets (34, 36).

Our analysis also highlighted the critical role of
transfer learning in overcoming the initial scarcity
of labeled COVID-19 imaging datasets. Most high-
performing models relied on architectures pre-
trained on large-scale datasets such as ImageNet or
ChestX-rayl14 before being fine-tuned on COVID-
19-specific cohorts. This approach allows models to
inherit fundamental feature-detection capabilities,
such as edge, shape, and contrast recognition, and
subsequently adapt these features to pulmonary
pathologies (39). Importantly, models fine-tuned on
general pneumonia datasets before COVID-19
adaptation consistently outperformed those trained
directly from non-medical datasets, reinforcing the
superiority of “medical-to-medical” transfer
learning for severity stratification tasks.

The comparative evaluation of Chest X-ray (CXR)
and Lung Ultrasound (LUS) vyields important
implications for point-of-care medicine. While
CXR remains the most widely used imaging
modality due to its accessibility and standardized
interpretation, our meta-analysis demonstrates that
LUS-based Al models achieve comparable, and in
certain clinical contexts superior, sensitivity (40).
This is particularly evident in the detection of
subpleural consolidations, pleural irregularities, and
B-lines, which are hallmark features of viral
interstitial pneumonia.

Lung ultrasound offers several practical advantages,
including portability, absence of ionizing radiation,
and suitability for serial bedside monitoring in
intensive care units (ICUs) (40). Integrating Al with
LUS enables real-time automated scoring systems
that quantify lung involvement, track disease
progression, and guide interventions such as prone
positioning, fluid management, and ventilator
adjustments. This synergy democratizes advanced
diagnostic capabilities, extending high-level care to

183

http://dx.doi.org/10.52533/JOHS.2026.60201



http://dx.doi.org/10.52533/JOHS.2026.60201

resource-limited environments and reducing
dependence on centralized imaging infrastructure
(39).

The integration of domain knowledge emerged as a
key determinant of model performance across
studies. Al models incorporating anatomical
segmentation, region-of-interest  selection, or
clinician-informed constraints consistently
outperformed purely data-driven, end-to-end
networks (37). By directing model attention to
pulmonary zones most affected by COVID-19,
these approaches reduce the likelihood of learning
spurious correlations, such as scanner-specific
artifacts, institutional labeling patterns, or patient
positioning biases. This finding underscores the
importance of a ‘“human-in-the-loop” paradigm,
where Al systems are designed to augment rather
than replace clinical reasoning, ensuring alignment
with established radiological principles (33, 37).

From a health economics perspective, Al-driven
severity assessment tools offer substantial long-term
value. Automated triage systems reduce the
workload of senior radiologists, minimize
unnecessary ICU admissions through early severity
prediction, and optimize the allocation of scarce
resources such as ventilators and specialized
personnel (32, 33). In low- and middle-income
countries (LMICs), Al-enhanced LUS presents a
cost-effective alternative to CT-based assessment,
lowering infrastructure barriers while maintaining
diagnostic quality. Additionally, cloud-based
inference pipelines facilitate rapid scalability,
allowing institutions of varying sizes to benefit from
Al-driven decision support without extensive local
computational resources (35, 36).

Equity and generalizability remain central
challenges to widespread Al deployment. Evidence
from the reviewed studies indicates that models
trained on homogeneous datasets often perform
poorly when applied to diverse populations.
Performance declines of up to 15% during external
validation highlight the ethical imperative to ensure
demographic, geographic, and socioeconomic
diversity in training datasets (41, 28). Without
deliberate inclusion ~ of  underrepresented

Journal of Healthcare Sciences

populations, Al risks reinforcing existing healthcare
disparities, necessitating regulatory oversight,
transparent reporting, and post-deployment auditing
frameworks (29).

A persistent barrier to clinical adoption is the
perceived “black-box” nature of deep learning
models. To mitigate this concern, explainable Al
(XAI) techniques, such as Gradient-weighted Class
Activation Mapping (Grad-CAM), have been
increasingly incorporated to visualize regions
influencing model predictions. These tools enhance
clinician trust by allowing verification of Al outputs
against established radiological signs, including
GGOs, B-lines, and consolidation patterns (35, 37).
Nevertheless, robust external validation remains a
critical benchmark, as models often demonstrate
excellent internal performance yet degrade when
exposed to new imaging hardware, acquisition
protocols, or patient populations (28).

Beyond static classification, Al enables longitudinal
monitoring of disease progression. “Delta-Al”
frameworks compare sequential imaging studies to
quantify improvement or deterioration over time.
Obijective metrics, such as changes in B-line density
or consolidation extent, can guide clinical decision-
making and detect subtle deterioration before overt
hypoxemia develops. However, data
standardization remains fundamental to Al
reliability. Establishing standardized severity
grading systems and global repositories of
consensus-labeled imaging data would significantly
accelerate robust model development and cross-
institutional collaboration (34, 36).

Strengths and limitations

The strengths of this review include its
comprehensive longitudinal perspective on Al
evolution from 2020 to 2025, with a specific focus
on severity stratification rather than binary
diagnosis. Rigorous risk-of-bias assessment using
the modified QUADAS-2 tool enhances confidence
in the pooled findings. However, limitations persist,
including the retrospective nature of most included
studies, heterogeneity in severity definitions, and
reliance on English-language publications, which
may exclude relevant data from heavily impacted
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regions (41). Despite these constraints, the pooled
results provide a reliable estimate of current Al
performance and a clear roadmap for future
technical and clinical development.

Future Directions

Future research should prioritize multimodal data
fusion, integrating imaging with electronic health
records (EHR) and laboratory biomarkers such as
D-dimer, ferritin, and C-reactive protein (CRP) to
capture the systemic nature of COVID-19. In
conclusion, the transition from traditional CNNs to
advanced architectures, combined with the
integration of domain knowledge and rigorous
external validation, has substantially improved Al-
based COVID-19 severity stratification. Addressing
remaining  challenges  in  generalizability,
interpretability, and data standardization will enable
Al to evolve from a research innovation into a
reliable, integral component of modern clinical
practice. Its potential to democratize high-quality
care firmly positions Al as a transformative pillar of
global respiratory medicine (29).

Conclusion

This systematic review and meta-analysis highlight
significant advancements in Al-based COVID-19
severity assessment over the past five years, with
notable improvements in classification accuracy.
Integration of domain knowledge was the most
impactful factor, enhancing performance compared
to models without clinical expertise. While CXR-
based models showed slightly better pooled
performance than LUS-only models,
transformer/attention-based architectures
consistently outperformed CNNs. Limited external
validation and performance gaps remain key
challenges for clinical translation. Future Al
development should focus on robust external
validation, explicit domain knowledge integration,
larger and balanced training datasets, and
standardized performance reporting. These Al
approaches hold potential applications beyond
COVID-19 for accurate severity assessment in
various respiratory conditions.
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