JOURNAL OF HEALTHCARE SCIENCES

Volume 5 Issue 11 2025, Article ID: JOHS2025001110

http://dx.doi.org/10.52533/JOHS.2025.51108

e-ISSN: 1658-8967

Review

Impact of Different Toothbrushing Techniques on Plaque Removal

Hawra Abdalkreem Al Eid^{1*}, Manar Saeed Alsammak ², Maram Ayed Alzarraa ³

Correspondence should be addressed **Hawra Abdalkreem Al Eid**, Department of Dentistry, Dammam Health Centers, Dammam, Saudi Arabia, Email: hawraabdalkreem@gmail.com

Copyright © 2025 **Hawra Abdalkreem Al Eid** this is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 01 October 2025, Accepted: 10 November 2025, Published: 11 November 2025.

Abstract

Maintaining oral hygiene and avoiding common dental conditions like caries, gingivitis, and periodontitis depends on the efficient removal of plaque. The most accessible and popular mechanical plaque-control technique is still tooth brushing. Various brushing techniques have been developed over time, such as the Bass, Stillman Charter, and Fone's methods, which are all intended to enhance the removal of plaque from various regions of the tooth and gingiva. While manual brushing with these methods can be successful, it frequently calls for accuracy, steady effort, and patient cooperation. Particularly for people with poor brushing habits or limited manual dexterity, powered toothbrushes, especially oscillating-rotating and sonic models, have recently shown promise as instruments that improve efficacy and lessen reliance on brushing technique. Cost, user preference, and comfort, however, continue to be obstacles to their broad adoption. Using data from recent clinical trials and comparative studies, this narrative review investigates how different toothbrushing methods affect the removal of plaque. The impact of brushing pressure, time, and user education on oral hygiene results is also covered. Both powered and manual methods have their uses, but proper application of reinforcement of behavior and patient-specific advice is essential for any technique's long-term success. This review suggests that certain concerns need to be covered by future studies to match patient profiles and clinical requirements with technique selection and achieve patient compliance.

Keywords:

Oral hygiene, gingivitis, periodontitis, dental plaque, manual toothbrushing, powered toothbrushing.

¹ Department of Dentistry, Dammam Health Centers, Dammam, Saudi Arabia

² Department of Dentistry, Eradah Complex and Mental Health, Dammam, Saudi Arabia

³ Department of Dentistry, Ministry of Health, Umluj, Saudi Arabia

Introduction

Bacteria and extracellular polymeric materials combine to form dental plaque, a biofilm that builds up on the surface of teeth (1, 2). Plaque is an extreme situation that can lead to tooth loss; if left unchecked, it can lead to periodontitis, gingivitis, and dental caries (3, 4). Maintaining oral hygiene and halting disease progression can be achieved most effectively by mechanically removing plaque with a toothbrush every day (5). The effectiveness of various brushing techniques varies greatly, even though brushing is widely accepted as the primary method for controlling plaque (6, 7). Plaque optimized removal has been through development of several techniques (8, 9). One of the most advised techniques for effectively cleaning subgingival plaque is the Bass technique, which entails positioning the toothbrush bristles at a 45degree angle to the gingival margin and employing tiny vibratory motions (10). The Fones technique, which uses circular motions, is mainly used on children because of its simplicity, whereas the Stillman and Charter techniques were developed to address particular oral conditions like gingival recession or orthodontic appliances (11). Plaque control has significantly improved in recent years as a result of the popularity of powered toothbrushes (12-14). Powered toothbrushes remove plaque more easily by using oscillating, rotating, or sonic movements, which lessens the need for the user to execute the technique correctly (15-17). The efficacy of powered and manual toothbrushing has been compared in numerous studies, with many indicating that powered toothbrushes may remove plaque better because of their automated motion and capacity to reach hard-to-clean areas (14, 18). Although a variety of brushing methods and tools are available, several factors affect how well plaque is removed overall (19). Longevity frequency, user compliance, and dexterity all affect how well oral hygiene procedures work out (20, 21). Research shows that many people don't brush for the full two minutes, which lessens the efficiency of plaque removal lessens the efficiency of plaque removal (22). Furthermore, regardless of the technique employed, incorrect brushing force can result in negative consequences like gingival recession and

enamel wear, underscoring the significance of good technique (23). By analyzing recent research comparing powered and manual toothbrushes, this review of the literature seeks to determine how different brushing methods affect the removal of plaque. Through an analysis of the benefits and drawbacks of different brushing techniques, this review will shed light on the best ways to control plaque and emphasize the necessity of tailored advice based on patient-specific variables.

Methods

An extensive analysis of recent studies on toothbrushing methods and their efficacy in removing plaque served as the foundation for this narrative literature review. Through searches of electronic databases such as PubMed, Google Scholar, ProQuest, Epes-cohost, and ScienceDirect, pertinent peer-reviewed publications were found. With an emphasis on English-language articles, studies released between 2012 and 2025 were taken "toothbrushing into consideration. The terms technique", "manual brushing", "powered toothbrush plaque removal", "oral hygiene effectiveness", and" patient compliance" were among the search terms used. The review covered observational studies and randomized clinical trials that looked at how different brushing techniques could reduce plaque in healthy people. The goal was to compile a comprehensive understanding of how device type, technique duration, and compliance affect plaque control. Since the goal of this review is to present a broad synthesis of recent findings rather than a critical evaluation, no formal quality assessment tool was used. The studies were selected for their topical relevance and ability to shed light on the clinical and practical ramifications of various brushing techniques.

Discussion

The efficacy of manual toothbrushing methods

Several tried-and-true methods have been developed to maximize efficacy while minimizing damage to oral tissues, and manual toothbrushing is still the most popular way to remove plaque (24, 25). Since the Bass technique is the best at removing plaque from the gingival margin and subgingival

areas, it is the most frequently advised among these (26). By positioning the toothbrush bristles at a 45degree angle to the gum line, this technique enables them to gently pierce the sulcus. The plaque and biofilm are then removed using tiny vibratory or circular motions. According to research, people who have received instruction in the Bass technique have plaque buildup and gingival much less inflammation than people who use unstructured brushing techniques (10, 27). However, many people find it difficult to execute the technique correctly due to its requirement for controlled movements and precision, which reduces its effectiveness (28, 29).

A variation of the Bass technique, the Stillman technique is intended for patients with periodontal issues or gingival recession (30). The bristles are positioned at the same 45-degree angle and, in contrast to the Bass technique, are gently rolled toward the crown rather than being inserted into the sulcus. Because it minimizes irritation while still effectively removing plaque, this technique is frequently advised for people with sensitive gums or those recuperating from periodontal disease (11). It may, however, be marginally less successful in preventing gingivitis and early-stage periodontitis because it does not penetrate the sulcus as deeply as the Bass method (31).

On the other hand, the Charter technique is especially advised for people who have had postperiodontal surgery, orthodontic appliances, or dental prostheses (11). This method involves gently pressing the bristles against the teeth and brackets at an angle that is either upward or downward from the gum line. This is followed by a series of vibratory strokes. By ensuring that debris and plaque are cleared away from the areas surrounding braces, bridges, and other dental restorations, positioning lowers the possibility of plaque buildup in difficult-to-reach places. It may be less successful in preventing gingivitis in people without orthodontic appliances, though, because the bristles do not engage the gingival sulcus as well as the Bass technique. A common problem with manual brushing methods is the propensity for overpressure, which over time can cause gum recession, gingival abrasion, and enamel erosion (32, 33). According to research, a lot of people unintentionally brush too hard, especially when using toothbrushes with harder bristles. Soft or extra-soft bristled brushes are therefore typically advised to reduce this risk (34, 35). When done correctly and consistently, manual brushing is still the most accessible and economical way to remove plaque, even with these possible disadvantages.

Are Electric Toothbrushes a Better Option?

Because powered toothbrushes eliminate the need for precise manual techniques through automated motions, they have become increasingly popular in recent years. These tools are especially helpful for people who struggle to maintain proper manual brushing techniques because they use oscillating, rotating, or sonic vibrations to effectively remove plaque and debris (17, 36). Among the powered brush designs that have been studied the most is the oscillating-rotating toothbrush (37-39). After three months of use, oscillating-rotating toothbrushes showed measurable improvements in gingivitis reduction and plaque removal compared to manual toothbrushes (15, 37). Another type of powered brush is the sonic toothbrush, which works by vibrating at a high frequency (between 30000 and 40000 strokes per minute). Plaque can be removed from interdental and subgingival areas due to the micro-bubbles created by these vibrations, which break up plaque biofilm outside of direct bristle contact (40). Sonic toothbrushes are especially useful for cleaning hard-to-reach places and enhancing general oral hygiene, according to studies (41, 42). Powerful toothbrushes have drawbacks despite their obvious benefits. Cost is a major deterrent for many people since high-end powered toothbrushes can be significantly more costly than manual ones. Furthermore, some consumers complain that the vibrations are uncomfortable, and others find it challenging to control the larger brush heads of certain models, especially in smaller mouths. Pressure sensors that warn users when they use too much force and timers that make sure brushing lasts the recommended two minutes are two ways that modern powered toothbrushes have tried to allay these worries (43).

The Role of Compliance and Behavioral Factors in Plaque Removal

Consistency and compliance are central to determining the best results of the removal of plaque, irrespective of the brushing technique employed. According to studies, many people do not brush for two minutes as proposed, which maximizes the vulnerability to oral infection and results in poor plaque control (44, 45). The average adult brushing time equals 45 to 70 seconds and is far below the guideline, and those who are using the powered toothbrushes diverge from recommended brushing guidelines (46, 47). Oral care providers stress that there is more involved than proper brushing technique in achieving good oral health. Whether an individual's oral hygiene practice will be successful to a significant degree depends on such behavioral factors as motivation, education, and professional guidance (48, 49). Individuals who employ self-taught brushing techniques have lower gingivitis and poorer plaque control than those who receive professional training in brushing techniques (50, 51). Besides, it has been demonstrated that behavioral treatment, like mobile phone-based brushing timers and reminder apps, increases compliance, especially among younger age groups (52-54). A study discussed the correlation between smartphone or app usage and brushing duration and frequency during the followup period, and it found in positive correlation (52). A cross-sectional questionnaire found a promising role for mobile apps in establishing oral hygiene by assessing the perception of individuals toward using the apps (55). The efficacy of plaque removal is also improved through the application of adjunctive oral hygiene aids like flossing and antimicrobial mouthwashes (56-58). Interdental areas are a major site for plaque accumulation and a major causative factor for gingivitis and periodontitis after the removal of much plaque on accessible surfaces by brushing (59, 60).

Patient motivation and education are the primary determinants of long-term oral health. Future studies ought to start concentrating on the particular uses of each manual technique based on each person's current state of oral health. Future research should assess the long-term benefits and drawbacks of powered toothbrushes with a focus on patient satisfaction, adherence, and their ongoing effectiveness. It's also worthwhile to reevaluate whether manual brushing techniques can still be applied to a range of populations and how to quantify and enhance the elements that contribute to proper technique and brushing time.

Conclusion

Several variables, such as brushing technique, time pressure, and patient compliance, can affect the best possible plaque removal. Plaque control with manual toothbrushes depends on the recommended technique (Bass, Charter, and Stillman techniques), correct usage, and the ability to follow instructions. Patient education and continuing education are linked to the effectiveness of manual toothbrushes. More plaque can be removed by electric toothbrushes than by manual ones, especially for patients with poor or inconsistent technique and limited manual dexterity. Costs of toothbrush accessibility or comfort may have a long-term impact on usage and compliance, even in the face of treatment complications, additional health benefits, and evidence of efficacy. In addition to using the right technique and toothbrush, successful plaque removal also depends on brushing time, pressure awareness, and the absence of other bad habits that compromise oral health.

Disclosure

Conflict of interest

There is no conflict of interest.

Funding

No funding.

Ethical consideration

Non applicable.

Data availability

Data that support the findings of this study are embedded within the manuscript.

Author contribution

All authors contributed to conceptualizing, data drafting, collection and final writing of the manuscript.

References

- 1. Jain K, Parida S, Mangwani N, Dash HR, Das S. Isolation and characterization of biofilm-forming bacteria and associated extracellular polymeric substances from oral cavity. Annals of microbiology. 2013;63:1553-62.
- 2. Li H, Liu H, Zhang L, Hieawy A, Shen Y. Evaluation of extracellular polymeric substances matrix volume, surface roughness and bacterial adhesion property of oral biofilm. Journal of Dental Sciences. 2023;18(4):1723-30.
- 3. Ramseier CA, Anerud A, Dulac M, Lulic M, Cullinan MP, Seymour GJ, et al. Natural history of periodontitis: Disease progression and tooth loss over 40 years. Journal of clinical periodontology. 2017;44(12):1182-91.
- 4. Bobetsis YA, Kotsikoris I, Liapis CD, Liasis N, Kakisis J, Kourlaba G, et al. Association between periodontal disease and vulnerable plaque undergoing morphology patients carotid in endarterectomy. IJC Heart & Vasculature. 2020;30:100601.
- 5. Needleman I, Nibali L, Di Iorio A. Professional mechanical plaque removal for prevention of periodontal diseases in adults—systematic review update. Journal of clinical periodontology. 2015;42:S12-S35.
- 6. Sanz M, Bäumer A, Buduneli N, Dommisch H, Farina R, Kononen E, et al. Effect of professional plaque removal mechanical on secondary prevention of periodontitis and the complications of gingival and periodontal preventive measures: Consensus report of group 4 of the 11th European Periodontology Workshop on on effective prevention of periodontal and peri-implant diseases. Journal of clinical periodontology. 2015;42:S214-S20.

- 7. Slot DE, Valkenburg C, Van der Weijden G. Mechanical plaque removal of periodontal maintenance patients: A systematic review and network meta-analysis. Journal of Clinical Periodontology. 2020;47:107-24.
- 8. Rajwani AR, Hawes SND, To A, Quaranta A, Aguilar JCR. Effectiveness of manual toothbrushing techniques on plaque and gingivitis: a systematic review. Oral health & preventive dentistry. 2020;18(4):a45354.
- 9. Deinzer R, Weik U, Eidenhardt Z, Leufkens D, Sälzer S. Manual toothbrushing techniques for plaque removal and the prevention of gingivitis—A systematic review with network meta-analysis. Plos one. 2024;19(7):e0306302.
- 10. Ausenda F, Jeong N, Arsenault P, Gyurko R, Finkelman M, Dragan IF, et al. The effect of the bass intrasulcular toothbrushing technique on the reduction of gingival inflammation: a randomized clinical trial. Journal of Evidence Based Dental Practice. 2019;19(2):106-14.
- 11. Bok H-J, Lee CH. Proper tooth-brushing technique according to patient's age and oral status. Korean Academy of Preventive Dentistry. 2020;16(4):149-53.
- 12. Wang P, Xu Y, Zhang J, Chen X, Liang W, Liu X, et al. Comparison of the effectiveness between power toothbrushes and manual toothbrushes for oral health: a systematic review and meta-analysis. Acta Odontologica Scandinavica. 2020;78(4):265-74.
- 13. Kurtz B, Reise M, Klukowska M, Grender J, Timm H, Sigusch B. A randomized clinical trial comparing plaque removal efficacy of an oscillating–rotating power toothbrush to a manual toothbrush by multiple examiners. International journal of dental hygiene. 2016;14(4):278-83.
- 14. Erbe C, Klees V, Ferrari-Peron P, Ccahuana-Vasquez RA, Timm H, Grender J, et al. A comparative assessment of plaque removal and toothbrushing compliance between a manual and an interactive power toothbrush among adolescents: a

- single-center, single-blind randomized controlled trial. BMC Oral Health. 2018;18:1-10.
- 15. Ferrillo M, Mariani P, Gallo V, Leone S, Pezzotti F, Fortunato L, et al. Effectiveness of oscillating and rotating versus high-frequency sonic powered toothbrush in dental hygiene university students: a proof-of-concept study. Applied Sciences. 2022;13(1):18.
- 16. Lewis RD, Kanagasingam S, Cook N, Krysmann M, Taylor K, Pisani F, editors. The effect of different electric toothbrush technologies on interdental plaque removal: a systematic review with a meta-analysis. Healthcare; 2024: MDPI.
- 17. Adam R, Erb J, Grender J. Randomized controlled trial assessing plaque removal of an oscillating-rotating electric toothbrush with microvibrations. International Dental Journal. 2020;70:S22-S7.
- 18. Vorwerk L, Ghassemi A, Hooper W, Patel V, Milleman J, Milleman K. Comparative plaque removal efficacy of a new powered toothbrush and a manual toothbrush. J clin dent. 2016;27(3):76-9.
- 19. Altindal D, Sahin Aydinyurt H, Korkmaz Yalcin D. Evaluation of knowledge about and attitudes towards toothbrush disinfection, personal plaque control, and periodontal diseases of patients presenting to dental clinics. International Journal of Dental Hygiene. 2023;21(2):334-49.
- 20. Younus A, Qureshi A. Tooth brush changing frequency and associated socio-demographic and oral hygiene factors among residents of Karachi. Journal of Dentistry and Oral Hygiene. 2016;8(2):4-11.
- 21. Macote-Orosco L, Martín-Vacas A, Paz-Cortés MM, Mourelle Martínez MR, de Nova MJ. The Relationship Between Manual Dexterity and Toothbrushing Efficiency in Preschool Children: A Crossover Study. Children. 2024;11(12):1498.
- 22. Saghiri MA, Amanabi M, Vakhnovetsky J, Amini SB, Samadi E. Effects of brushing duration on the efficacy of dental plaque removal: An in vitro study. Int J Dent Hyg. 2023;21(3):618-23.

- 23. Hashem AS, Patil SR, Issrani R, Prabhu N, Albalawi AS, Alam MK. Relationship between gingival recession and tooth brushing habits. Bangladesh Journal of Medical Science. 2024;23(3):846-50.
- 24. Kaneyasu Y, Shigeishi H, Niitani Y, Takemoto T, Sugiyama M, Ohta K. Manual toothbrushes, self-toothbrushing, and replacement duration to remove dental plaque and improve gingival health: A scoping review from recent research. Journal of Dentistry. 2024:105240.
- 25. Rajwani AR, Hawes SND, To A, Quaranta A, Rincon Aguilar JC. Effectiveness of Manual Toothbrushing Techniques on Plaque and Gingivitis: A Systematic Review. Oral Health Prev Dent. 2020;18(4):843-54.
- 26. Janakiram C, Taha F, Joe J. The efficacy of plaque control by various toothbrushing techniques-a systematic review and meta-analysis. J Clin Diagn Res. 2018;12(11):1-5.
- 27. Shah SLS, Hameed A, Sana R. Assessment of Various Tooth Brushing Techniques and its Association with Dental Plaque: Tooth Brushing Techniques and its Association with Dental Plaque. Pakistan Journal of Health Sciences. 2024:19-22.
- 28. Weng L, Wen J, Cui G, Liang J, Pang L, Lin H. Comparison of modified bass, rolling, and current toothbrushing techniques for the efficacy of plaque control—A randomized trial. Journal of Dentistry. 2023;135:104571.
- 29. Harnacke D, Mitter S, Lehner M, Munzert J, Deinzer R. Improving oral hygiene skills by computer-based training: a randomized controlled comparison of the modified Bass and the Fones techniques. PloS one. 2012;7(5):e37072.
- 30. Mehdi Y, Waqar Z, Ullah F, Bokhari S, ul Haque M, Askari H. COMPARING AND EVALUATING THE EFFECTIVENESS OF VARIOUS TOOTHBRUSHING METHODS IN PLAQUE REMOVAL AND GUM HEALTH. The Research of Medical Science Review. 2024;2(3):511-8.

- 31. Nassar PO, Bombardelli CG, Walker CS, Neves KV, Tonet K, Nishi RN, et al. Periodontal evaluation of different toothbrushing techniques in patients with fixed orthodontic appliances. Dental press journal of orthodontics. 2013;18:76-80.
- 32. Van der Weijden FA, Campbell SL, Dörfer CE, González-Cabezas C, Slot DE. Safety of oscillating-rotating powered brushes compared to manual toothbrushes: a systematic review. Journal of periodontology. 2011;82(1):5-24.
- 33. Elkerbout TA, Slot DE, Rosema NM, Van der Weijden G. How effective is a powered toothbrush as compared to a manual toothbrush? A systematic review and meta-analysis of single brushing exercises. International journal of dental hygiene. 2020;18(1):17-26.
- 34. Tanner M, Singh R, Svellenti L, Hamza B, Attin T, Wegehaupt FJ. Effect of toothbrush bristle stiffness and brushing force on cleaning efficacy. Oral Health & Preventive Dentistry. 2023;21:b4100897.
- 35. Hamza B, Tanner M, Körner P, Attin T, Wegehaupt FJ. Effect of toothbrush bristle stiffness and toothbrushing force on the abrasive dentine wear. International Journal of Dental Hygiene. 2021;19(4):355-9.
- 36. Klonowicz D, Czerwinska M, Sirvent A, Gatignol J-P. A new tooth brushing approach supported by an innovative hybrid toothbrush-compared reduction of dental plaque after a single use versus an oscillating-rotating powered toothbrush. BMC Oral Health. 2018;18:1-9.
- 37. Grender J, Adam R, Zou Y. The effects of oscillating-rotating electric toothbrushes on plaque and gingival health: a meta-analysis. Am J Dent. 2020;33(1):3-11.
- 38. El-Chami H, Younis A, Brignardello-Petersen R. Efficacy of oscillating rotating versus side-to-side powered toothbrushes on plaque and gingival index reduction: a systematic review. The Journal of the American Dental Association. 2021;152(2):115-26. e4.

- 39. Clark-Perry D, Levin L. Systematic review and meta-analysis of randomized controlled studies comparing oscillating-rotating and other powered toothbrushes. The Journal of the American Dental Association. 2020;151(4):265-75. e6.
- 40. Ohsumi T, Takenaka S, Sakaue Y, Suzuki Y, Nagata R, Hasegawa T, et al. Adjunct use of mouth rinses with a sonic toothbrush accelerates the detachment of a Streptococcus mutans biofilm: an in vitro study. BMC Oral Health. 2020;20:1-10.
- 41. Goyal CR, Qaqish JG, Schuller R, Lyle DM. Cordparison of a Novel Sonic Toothbrush With a Traditional Sonic Toothbrush and Manual Brushing and Flossing on Plaque, Gingival Bleeding, and Inflammation: A Randomized Controlled Clinical Trial. Compendium of Continuing Education in Dentistry (15488578). 2018.
- 42. De Jager M, Rmaile A, Darch O, Bikker J. The effectiveness of manual versus high-frequency, high-amplitude sonic powered toothbrushes for oral health: a meta-analysis. J Clin Dent. 2017;28(1):13-28.
- 43. Ayad F, Petrone DM, Wachs GN, Mateo LR, Chaknis P, Panagakos F. Comparative efficacy of a specially engineered sonic powered toothbrush with unique sensing and control technologies to two commercially available power toothbrushes on established plaque and gingivitis. J Clin Dent. 2012;23(Spec No A):A5-10.
- 44. Weik U, Shankar-Subramanian S, Sämann T, Wöstmann B, Margraf-Stiksrud J, Deinzer R. "You should brush your teeth better": a randomized controlled trial comparing best-possible versus asusual toothbrushing. BMC Oral Health. 2023;23(1):456.
- 45. Khan IM, Mani SA, Doss JG, Danaee M, Kong LYL. Pre-schoolers' tooth brushing behaviour and association with their oral health: a cross sectional study. BMC Oral Health. 2021;21(1):283.
- 46. Essalat M, Morrison D, Kak S, Chang EJ, Penso IR, Kulchar RJ, et al. A naturalistic study of brushing patterns using powered toothbrushes. Plos one. 2022;17(5):e0263638.

- 47. Glenny A-M, Walsh T, Iwasaki M, Kateeb E, Braga MM, Riley P, et al. Development of Tooth Brushing Recommendations Through Professional Consensus. International Dental Journal. 2024;74(3):526-35.
- 48. Abbinante A, Antonacci A, Antonioni M, Butera A, Castaldi M, Cotellessa S, et al. Concordance and Clinical Outcomes Improvement Following Oral Hygiene Motivation: A Systematic Review and Report of the Workshop of the Italian Societies of Dental Hygiene. International Journal of Dentistry. 2024;2024(1):8592336.
- 49. Carra MC, Detzen L, Kitzmann J, Woelber JP, Ramseier CA, Bouchard P. Promoting behavioural changes to improve oral hygiene in patients with periodontal diseases: A systematic review. Journal of clinical periodontology. 2020;47:72-89.
- 50. Holloway JA, Davies M, McCarthy C, Khan I, Claydon NC, West NX. Randomised controlled trial demonstrating the impact of behaviour change intervention provided by dental professionals to improve gingival health. Journal of Dentistry. 2021;115:103862.
- 51. Chang W-J, Lo S-Y, Kuo C-L, Wang Y-L, Hsiao H-C. Development of an intervention tool for precision oral self-care: Personalized and evidence-based practice for patients with periodontal disease. PLoS One. 2019;14(11):e0225453.
- 52. Farhadifard H, Soheilifar S, Farhadian M, Kokabi H, Bakhshaei A. Orthodontic patients' oral hygiene compliance by utilizing a smartphone application (Brush DJ): a randomized clinical trial. BDJ open. 2020;6(1):24.
- 53. Scheerman JFM, van Empelen P, van Loveren C, van Meijel B. A Mobile App (WhiteTeeth) to Promote Good Oral Health Behavior Among Dutch Adolescents with Fixed Orthodontic Appliances: Intervention Mapping Approach. JMIR Mhealth Uhealth. 2018;6(8):e163.
- 54. Underwood B, Birdsall J, Kay E. The use of a mobile app to motivate evidence-based oral hygiene behaviour. British Dental Journal. 2015;219(4):E2-E.

- 55. Underwood B, Birdsall J, Kay E. The use of a mobile app to motivate evidence-based oral hygiene behaviour. Br Dent J. 2015;219(4):E2.
- 56. Arora V, Tangade P, Tirth A, Pal S, Tandon V. Efficacy of dental floss and chlorhexidine mouth rinse as an adjunct to toothbrushing in removing plaque and gingival inflammation—A three way cross over trial. Journal of Clinical and Diagnostic Research: JCDR. 2014;8(10):ZC01.
- 57. Milleman J, Bosma ML, McGuire JA, Sunkara A, McAdoo K, DelSasso A, et al. Comparative effectiveness of toothbrushing, flossing and mouthrinse regimens on plaque and gingivitis: a 12-week virtually supervised clinical trial. American Dental Hygienists' Association. 2022;96(3):21-34.
- 58. Prasad M, Patthi B, Singla A, Gupta R, Jankiram C, Kumar JK, et al. The clinical effectiveness of post-brushing rinsing in reducing plaque and gingivitis: a systematic review. Journal of clinical and diagnostic research: JCDR. 2016;10(5):ZE01.
- 59. Chipre SR, Shah M. Evaluation of Clinical Efficacy and Patient Compliance of Interdental Floss as an Adjunct to Toothbrushing for Control of Dental Plaque: A Comparative Study. Journal of Integrated Health Sciences. 2024;12(1):36-41.
- 60. Crocombe L, Brennan D, Slade G, Loc D. Is self interdental cleaning associated with dental plaque levels, dental calculus, gingivitis and periodontal disease? Journal of periodontal research. 2012;47(2):188-97.